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Abstract. We study a model based on M scalar complex fields coupled to a scalar real field,
where all fields are treated classically as c-numbers. The model describes a composite particle
made up of N constiteents with bare mass mg interacting both with each other and with
themselves via the exchange of a particle of mass pg. The stationary states of the composite
particle are described by relativistic Hartree equations. Since the self-interaction is included,
the case of an elementary particle is a non-trivial special case of this model. Using an integral
transform method we derive the exact ground-state solution and prove its local stability. The
mass of the composite particle is calculated as the total energy in the rest frame. For the case of
a massless exchange particle the mass formufa is given in closed form. The mass, as a function
of the coupling constant, possesses a well pronounced minimum for each value of g/ my, while-
the absolute minimum occurs at g =0.-

1. Introdection and main results

In this paper we derive and study the exact ground-state solution in 3 + 1 dimensions for
a self-interacting system whose dynamics is governed by the relativistic Hartree equations.
Our motivation is to study bound states formed solely by self-interaction. Such bound
states (sometimes called non-topological solitons) offer a possibility of understanding the
internal properties of particles, such as their masses, charges and magnetic moments. Self-
interaction is a purely nonlinear and non-perturbative phenorhenon which is neither well
understood nor propetly appreciated at present. However, we argue that in the quantum
domain it is important and deserves close study. It may be the crucial missing element in
our understanding of quantum phenomena. Self-interaction appears frequently in quantum
field theories such as, for example, in quantum electrodynamics, where it leads to infinities.
Intuitively, the reason why these infinities appear is that we are using a perturbation theory
in which particles are associated with free fields such as plane waves or wave packets. The
fact that one is able to cure the theory and remove the infinities in a self-congistent manner
can be seen as an indication that the original theory, before the perturbation theory based
on free fields is applied to it, is correct and should merely be treated differently. What
is needed, perhaps, is an approach which-is based on self-interaction bound states instead
of free fields. An attempt at such an approach for the case of quantum electrodynamics
will be presented in a forthcoming paper. In the present paper we attempt to present the
self-interaction bound states in their own right. within the context of a classical field theory.
In doing so we will concentrate on their internal properties in which they differ so much
from free fields. )

The following model is motivated by its simplicity, self-consistency and by the fact that
it is connected to the large N, limit of QCD. It is not intended to be realistic in the first
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place. Yet some of its elements, for instance relativistic invariance, dimension 3 + 1 and
the nonlinear interaction, are clearly realistic,

We consider a system of N complex scalar fields ¥;(r,t), j = 1,..., N and a real
" scalar field ®(r, t) with the Lagrangian
= — ) ("W, W + mWY; — g P (V)T — 13790, D + p5d?) (1)
i=1
where p = ¢ = 1, and the equations of motion

(O —mi+g®(r, O)¥;{r, £) =0 (2)

N
O-pdor, ) =—¢g Z\If}"(’r, DY (r, 1) (3}

i=l
where 0 = A — §2/3:% = 8"5,. All the fields are assumed to be classical, i.e. commuting.
Notice that the interaction term in (1) is not positive definite and hence the stability question
arises. In this paper only the local stability is investigated in full detail. Here it suffices to
say that stable one-particle and many-particle bound states exist, with energies below the
threshold to the continuun states, provided certain restrictions are placed on the coupling
constant g and on @g/my. The fields W; are normalized according to

I o,
fd3r arfmp,—xy;i—J =1 j=1,...,N. 4

ar
Notice that the left-hand side of (4) is a constant of moticn. In the present context the 1 on
the right-hand side of (4) is purely conventional, in fact we could equally well have chosen
any other number. However, equations (2} and (3) allow for a rescaling of the fields, which
can be chosen to restore the 1 in (4). The fact that ¥; are complex fields and hence are
normalized according to (4) is an essential one since otherwise the model would contain
Mo = mg, ¥ = & as a special case and then it would be identical to the standard ¢? model
which is unstable even locally.

Equations (2)—(4) admit plane wave solutions with continuous energies |Ex| = k2 + m%
2 Mg

oy T—iBit ¢ N

. o)==
V2|ER S 13 24 Ex, |22

where §2 is an arbitrarily large normalization volume (a detailed discussion of plane wave
solutions in the context of non-topological solitons is given in [1]). As will be shown
below, the characteristic feature of these states is that for any N their total energy is always
positive and larger than the corresponding bare mass Nmyg, i.e. Eyqy 2 Nmg and hence on
the energy scale these states fill the continuum above N,

In contrast to the above continuum states there exist bound states with total energies
0 < Eyy < Nmyg. In the rest frame of the bound states the comresponding stationary state
solutions of (2) and (3) are of the form W;(r, ) = ¥;(r)e 5" and ®(r, 1) = ¢(r)/g, where
[E;| < my. For these stationary fields the equations of motion (2), (3) and the normalization
condition (4) become, respectively,

(& =y} +¢(P);(r) =0 ©

¥i(r,f) = 2 =00 (5)

N
(& — pd)d @) =—g* Y [Wu(r)f? 0
i=1
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and

, : :
3onl e (1312 = e ;. ,
[d Tl (r)]° = AEN J _ L...,N 8)

where y? = m3 — E? > 0. Once a solution is obtained, it can be Lorentz-boosted to an
arbitrary inertial frame. Equations (6) and (7) must be supplemented with suitable boundary
conditions (they are discussed below).

This system comprises a model of a composite particle made up of N spinless
_constituents of bare mass mg and the constituent energies |E;{, which interact with each
other and with themselves via the exchange of a particle of mass g, We identify the
physical mass M of the composite particle with its total energy Eiu. The total energy
follows in the vsual way from the Lagrangian (1)

N . 1 '
M = Epw = f d3v~( DIV} Vi B+ iy = o )+ 5 S 8 uﬁabz])-
j=1 .

The gradient term (V)2 can be eliminated using (7) and we obtain

v
M = f & S NVYF - Vi + (B2 + mdwrvy — Sv
J=1

Eliminating the remaining gradient term by the aid of (6) and using the normalization
condition (8), we get

M= _Z (|E,-| +1 f d3_1~¢(r)|'w,-(r)|2). (9)

Jj=1 g

For the coatinuum states given in (5) the last term in (9) vanishes as © — oo and hence
Eroral = -ZJ‘,-"_’__I E;| = Zj‘": 1 1Eg | 2 Nmg. In the case of bound states the last term in
{9) does not vanish and hence the total mass is not identical to the sum of the constituent
energies [E;| (i.e. to the sum of the bare masses mo and the binding energies mo — | E;| of
the constituents) but contains an additional term. Below we will show that for stationary
states this term is strictly positive. While the binding energies can be interpreted as the
energies which are gained by putting particles in an attractive potential, the last term in (9)
represents the energy which must be spent to create the potential itself. In a consistent field
theory these two sorts of energies are interdependent and always appear together.

In the case of N = 1 the mass formula (9) defines the mass of an elementary particle,
which we denote by m. It will be shown below that for stable bound-state solutions of
(6)~(7) we have m < mg and hence the ground states of particles are bound states and not
the continzum states for which m = myq. It is therefore not an assumption, but a necessity,
that in this model the particles are described by self-interaction bound states rather than by
plane waves or wave packets. The main aim of this paper is to solve (6){7) for the ground
state and to determine the dependence of the total mass M and the size parameter ry on
the coupling constant g, the bare mass myg, the mass of the exchange particle yp and the
number of constituents N.
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In a situation in which all of the constituent particles are in the same spherically
symmetric state with |E;| = |E] < mp and ¥5(r) = ¥ (r) = ¥ (}/+/4m, the system
of equations (6)—(7) simplifies to

&2 24 _
(dr +-——r +¢(r)) Y(r}=0 (10)
d2 24 gN )
(a—z-%—;—uu)eﬁ( f=-£2 ypm iy : (1D

where y? = mj — E%. Since we are mainly interested in the properties of the ground state,
which is the lowest-energy solution of (10)—(11), we can restrict ourselves to this situation.
For the mass we obtain

u=n(151+3 [ Proomor). (12

Contrary to the case of plane waves, the particles in the present model are extended,
As a measore of their spatial extension, we define the size parameter

ro = 2\E| f Fr i) 13)

where the factor 2|E| stems from the normalization condition (8).
The stationary states of the composite particle are described by Hartree equations. This
follows from the fact that (7) possesses the well known solution

b(r) = 2m.vcr>-~—z [ers wr.(r)P a4)

=1

which, if inserted in (8), gives the usual Hartree equations with the effective potential V(r).
Notice that the self-interaction (i = j) is included in the Hartree equations and therefore the
case of an elementary particle, where N = 1, is a non-trivial special case of this model. In
addition notice that in the present model the Hartree equations are exact and not approximate
as in the usual case. The model would be more realistic if the constituent particles were
fermions. Yet, despite this shortcoming, it is useful. For instance, it was shown in [2] that
baryons in the large N; limit of QCD are described by non-relativistic Hartree equations

(V2 4 2me + @(r)]x =0 (15)

where

2
@(T):ng’zfds )l : o . 6)

ir—v|

€ is the binding energy, m is the quark mass and y is the non-relativistic single-quark
wavefunction which is normalized according to f &r|x(r)|? = 1. Very briefly the reason
for this is the following. The colour part of the baryonic wavefunction is a singlet, which
is antisymmetric, and hence the rest of the wavefunction must be symmetric. ‘The colour
and spin degrees of freedom can be neglected in the lowest order of approximation and,
at the scale of hadronic bound states, the linear (confining)} part of the potential can also
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be neglected. Neglecting the relativistic kinematics and certain many-particle effects, the
resulting equations are the non-relativistic Hartree equations (15)—(16) for N identical
guarks. In this paper we will include the relativistic kinematics' and solve the relativistic
Hartree equations (6)—(7), since our method works equally well in this case.

- Thus, applied to the quark model, V(r) in (14) with po = 0 can be interpreted
as an effective potential in which dressed constituent quarks are bound. The quark—
- quark potential for point-like quarks is g2/[47(2m)?r], which is obtained by substituting
[¥; ()2 = §(r")/2m in (14). Comparing this potential with the QCD motivated quark-quark
potential for point-like quarks, 4o /3r, we obtain

32 _—‘4&5‘\(17‘1)
dzdm? ~ 3

()

where w,(m) is the strong running coupling constant of QCD taken at the mass m of
the constituent quark. Equation (17) can be used to relate the results obtained for the
present model to the large N, limit of QCD. The relation to the non-relativistic Hartree
equations (15)—(16) is determined by g2 = g?N/4m4m|E| and 2me = —y2. In [2] two
main conclusions were drawn in arriving at Hartree equations (15)-(16). First, provided
that g’ does not depend on N, (i.e. g &.1/4/N;), the baryon masses increase linearly with '
N.. This is an immediate consequence of (12). Second, under the same provision, the size
and shape of the baryons do not depend on M. This follows from (13) for the size and from
{(10)=(11} for the shape. However, to derive further conclusions concerning, for instance,
the mass spectrum or the dependence of the mass on the coupling constant, requires the
solution of the system (10}-(11).- We will take up these issues here in a more general
context where pg is arbitrary. Besides the connection to QCD, the model is useful in its
own right since it is self~consistent, the dimension is natural (3 4+ 1) and the interaction is
realistic (exchange of particles) and includes the self-interaction. Therefore, it allows us to
study the internal dynamical properties of particles such as the relation between the bare
mass mg and the physical mass m, or the dependence of m on the coupling constant g.

The main results of this paper are as follows. '

(i) Mass. For up = 0 there is a doublet of spherically symmetric solutions inthe N = 1
sector, which corresponds to a doublet of elementary particles with masses m and m*, where
m < m*, Consequently the composite particle with N constituents possesses N + 1 states
with spherical symmetry, which can be classified according to how many of the constituents
are in the excited state. The lowest state of the composite particle on the energy scale is
the ground state with the mass My given by

. TARL
3 2y
3 drmyery ]

where ap i$-a numerical constant, _

For wg % O there Is a triplet of spherically symmetric solutions in the N = 1 sector,
which corresponds to a triplet of elementary particles with masses m, m* and m**, where
m < m* and m £ m*™. Consequently the composite particle with N constituents now
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possesses N(N + 1)/2 + N 4+ 1 states with- spherical symmetry, which again can be
classified according to how many of the constituents occupy one or other excited states.
The dependence of M/Nmg on g°N, /4:rm§ for-various fixed values of uy/myg is illustrated
in figure 1{a). In this figure the ground state is plotted with a full curve, the excited state,
having all of the constituents residing in the state =, is plotted with a broken curve and the
excited state, having all of the constituents residing in the state #x, is plotted with a chain
curve. Notice that, for each value of ug/mg, the mass M of the ground state acquires a
local minimum at the maximally allowed value of gz/dmm% (dotted vertical line), which
becomes the absolute minimum M/Nmg = 2+/2/3 in the case o = 0 (dotted horizontal
iine). The appearance of such well pronounced minima of the mass may be a phenomenon
which is mare general than one restricted to the present model (see [6], for instance) and
hence may have some deeper significance (some speculations were discussed in [3]).
(ii) Size. For pg = 0 the size parameter of the ground state is given by

1/2
280 drm? 2y \?
?‘o="/—0 My 1+[1_(8 )]

mp g*N drmioln

172

where 8q and o are certain numerical constants. For the ground state rg — 00 as g/mg — 0.
This singularity disappears when po ¥ 0. For the case of minimal mass the size parameter
of the ground state also becomes minimized too and is given by o = \/550/&(]!?2[}.

(iii) Stability. The stability properties are investigated according to three independent
criteria. The first one is based on the mass defect AM = Nm — M, where M is the mass
of the composite particle and m denotes the mass of its free constituents. We found that
the ground state is stable against disintegration, i.e. AM > 0.

If the mass of a particle is larger than its bare mass, then such a particle is unstable. The
reason is that, in this case, some of its continuum states (for instance the states in (3)) are
energetically preferable to the bound state of the particle. According to this second criterion,
in the case wp = 0 the ground state is stable. For g % 0 the ground state is unstable for
smaller values of the coupling constant and stable for larger values (see figure 1(a}). ¥or
o > (.36my the ground state becomes unstable for all possible values of the coupling
constant, .

The third stability criterion is based on 82Eyw > 0, which means that a bound-state
solution is locally stable if it corresponds to a local minimum of the total energy (8 By = 0).
This criterion was shown by Rosen {4] to be necessary and sufficient for a dynamicat stability
in the sense of Liapunov. In the present paper we prove that for ug < ~/2mq the ground
state is locally stable. Moreover, it is proved that our model is the only option with locaily
stable bound states among the class of theories based on Lagrangians of the form (1), where
p and g are arbitrary real positive constants.

(iv) Existence condition. A short-range interaction cannot produce a bound state unless
the strength of the interaction is sufficiently large, i.e. the coupling constant is larger than
a certain limit. If the system is relativistic then, in addition to this constraint, the coupling
constant must be smaller than a certain limit. For the present model this existence condition
is given by

1 &8 _ & 1 g

ﬁthrm% = drrm? SN 4er§'

where go and g are certain functions of po/mg and are independent of N.
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Figure 1. (@) The mass to bare mass ratios My /Ny (full curve), Mowy/Nmp (broken curve)
and Mpow /Ny (chain curve) as functions of g>N /4wm3 for various fixed values of pp/ma.
Dotted vertical lings correspond to the maximal values of gzN/4rrm[2,. the dotted horizontal
line corresponds to the absolute minimum of the mass M/Nmy = 2\5/3, which occurs at
u = 0. (b) The mass to bare mass mtios M/Nmy (full curve), Myyy /Ny (broken curve)
and Muon/Nmy (chain curve) as functions of ¢ for various fixed values of po/mo. Dotted
vertical lines comrespond to the maximal values of g2 N/4mmd (o = o), the dotted horizontal
line corresponds to the absolute minimum of the mass M/Nmy = 2«/27/3, which occurs at

p=0

- (v) Wavefunctions. Equations (10) and (I1) are solved using an integral transform
method. The resulting wavefunctions are plotted in figures 2(a) and (b) for various values
of the parameter ¢ = wg/2y, where y* = mjy — E* » 0. More precisely, the scaled



3604 N Poliatziy

functions |E|/2yr(r)/y?/*and ¢(r)/y? are plotted, since in this form the wavefunctions are
both dimensionless and depend on the dimensionless variables yr and o only. Notice that
¢{r) > O for all r. There are no bound-state solutions for the case ¢(r) < 0.

P(r)al B Vo2

| TR R

-$()/7*

-4

L]
yr

Figure 2, (a) The wavefunction ¥{r) plotted as 2 function of the dimensionless variable yr for
various values of the parameter & = pup/2y, where ¥ = (mf — E*)M?. The function is scaled
by an appropriate factor in order to become a dimensionless wavefunction of only two variables
yr and o. The latter depends only on the fundamental parameters of the model, such as the
coupling constant g, (&) The same as in {a) for the petential function —¢{r).
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2. Integral transform
In [5] we discussed a method for solving the Schrédinger equation, which is most suitable
if at Targe distances the potential is proportional to an exponential function. It follows

from (11) that this is the case in the present situation and hence, according to [3] the
Integral transforms appropriate for (10) and (11) are

o0
V() = ape™" fu dp e g () (18)
and
$(r) = boe™" f " duet V() , (19)
i |

where ap is a normalization constant and bp is a constant Substituting (18} into (10) and
(19) into (11), we obtain .

o) =1 — bof(p — o) /# —iﬂ——a—r fﬂr du” V(' — uMe(n” — po) (20)
wo B+ 2p) s Jy,
and
2 +
g*Na? 0 / du ]
1% =1-— 8 + ug— 2 —_—
(e} y= (1 + 1o —2y) s W+ 20y FPY
x f 8o — u"Yo (s + o — 29) @1
2y pip i

where 8(i — aj is a step function which vanishes for u < a, equals % for ;£ = g and is
equal to 1 otherwise and ¢ = pgp or @ = 2y — g respectively. In deriving (21) we have
assumed that po/2y € 1. It will be shown below that this implies that we are restricting
ourselves to the case iy < 2mp. Now we introduce the dimensionless variables

u Ho by g*Naj
73 2y ! 2y ¢ 16792 2
and redefine the functions ¢ and V in terms of these variables
Ro(n,{,8)=eolw) Vo0, 8, 8) =V(w). (23)

Equations (20} and (21) become

8 3 !
Rg(n,s*,S)=1—n9(s—0)[ t(t+1)§f dr'Ve(n,8,t — R0, ¢,V —0)  (24)

and

* dr d

_¢ _ _ 9
Veln, &, 50 =1 9(s—{—0' D _‘,t(r+2t7)6t

t -
b f df' Re(, &, t — IR0, &, +0 = 1) ' (25)
1

-
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respectively.  Substituting (25) in (24) and performing an integration by parts, the
dependence on V,(n, £, 5} is eliminated and we obtain

d

¢ F dr
5 Roln 51 =) +5006 - 1)[1

1+ 1)

Ro(ns£,5) = 1 —09(5"0)[ =

£ Rt t—1 8 (7
x [[ar ZBEZD L [ o Rk - R = 1. 26)
We return now to the question of boundary conditions for (6) and (7) or, equivalently,
for (10) and (11). Since both (10) and (11) are second-order equations, they must be
supplemented by two conditions each. We first consider the case of yr(r) where, as usual,
the conditions are: (o0} = 0 and | (0} < co. The first condition has been taken into
account by (18). As for the second one, in order to translate it to a suitable and practical
condition, we write (18) using (22) and (23) as

o0
¥ ) =2yae [ dse IR0, 9) @n
0
and replace | (0)} < co by

5
f dse™ 2 R (n, &, 5)| < A (28)
0

where A is some suitable real number. This condition becomes the true boundary condition
as 5p = co and then rq —> 0, but for a finite accuracy result some finite values of 54 and ry
are sufficient. The order of the limits cannot be interchanged since R;(n, &, 5) as a function
of s does not vanish at infinity (its behaviour in the large s regime can be described roughly
as §% cos(bs + ¢) with some constants @, & and ¢). The conditions for ¢ (r} are the same:
(o) = 0 and |¢(0)| < oo. Again, the first condition has been taken into account by (19),
whereas for the second it follows from

[es]
B) = 270087 [ a5 V1,5, 29)
0
that [¢(0)| < oo can be replaced by

<A G0

f T ds e WY, (0, £, 5)

0

with some finite values for rq and sp depending on the accuracy to be achieved.
Equations (28) and (30) show that the constants n, { and o are not independent.

Thus, our next task is to solve (26) with parameters 7, £ and o satisfying (28) and (30).
This will be achieved in two steps: first we solve (26) regarding #, ¢ and o as independent
and then for each given ¢ we determine n and £ satisfying (28) and (30). Thus, at this
second step n and ¢ become functions of .
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3. Solution of integral equation

To obtain the solution of (26) we make the ansatz

(/0] l=no]

R;(n, r,;', 8y = Z Z (—n)"g"”gom(s'— HO —~ M, O

n=0 m=0 (3 1)

o0

D ¥ (=)Em(s — 1o — m)gun(s —no —m, o)

n=0 m=>0 .

1

where a number in square brackets represents the largest integer which is smaller than or
equal to that number. Notice that, for a fixed s < oo, the right-hand side of the above
equation is a finite sum, so the question of convergence does not appear. Substituting (31)
into (26) and comparing equal powers of  and £, we obtain the recurrence relation for the
functions ¢@pm

b4 de¢ e ! A t',o)
Pum(y, o) = _/[; T (%“'.mct‘ a)'I'ZZ_/(; de’ '+ ko + 2 — o2

(t+’l0+m+%)2_z =0 =1

k ! ¢
8 Vo
x ZZQ f A" i1 (¢ —t’,o)qaf.j_l(r”,a)) “(32)

i=0 j=I 0
where n =0,1,....m=0,1,... and
p-1m(y,0) =0 eo(y, o) =1 (33)

which guarantees that the ansatz is, in fact, a solution. Here and in what follows we have
adopted the convention that if the upper bound of a sum is less than the lower bound then
the contribution of the sum is zero. Notice that for fixed n and m the evaluation of the
right-hand side does not require knowledge of the left-hand side. Also notice that the ansatz
has been chosen so that the recurrence relation does not depend on the parameters # and
&. Therefore, once the ¢,,, functions are calcuiated, (26) is solved for any n and ¢ and we
can use this solution to find the values of n and { satisfying the boundary conditions (28)
and (30). Equation (31) combined with the above recurrence relation constitutes the exact
analytical solution of (26). -

The recurrence relation (32) can be iterated, so that finally no ¢,, functions will appear
on the right-hand side. For instance,

(¢ + 1)(y+0)
og{y-+a-+1)
1 f? dr 1 (t+1-o)(1+0})

eoi(y,0) = 5~ s C+DG+2) " Gritali-o)

@10(y, o) =1In

(34)

However, for higher »# and m one obtains multiple-integral representations of ¢, which
are not useful for our purposes. Since one cannot express the functions g, in terms of
elementary or spacial functions, one has to devise a numerical algorithm for their evaluation,

A suitable algorithm is given in the appendix. As a by-product of this algorithm, we also
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i(n)

Roln.¢. 5}

L {b)

vV (n¢s)

Figure 3, (a) The function R;{n,&,s) as & function of 5 for ¢ = 0.1 and n = 2.448(5),
¢ = 582.(3). The constants n and ¢ were determined from the boundary conditions (28) and
(30). (b) The same as in {a) for the function V. (n, £, 5).

obtain a function fn, (s, ¢), which is very useful since V, (1, £, s} is related to it in a simple
way:

Vo(n, £, 8) == 1 - % ZZ(—:})";’”G(S +0 —~ne — M) (s +0 —no —m, ) (35)
n=0 m=1
where
Fom(y,0) = fy dt frm(t, o). (36)
0

Notice that, for a fixed s < oo, the right-hand side of (35} is a finite sum.

Once the functions ¢, (v, ) and F,, (. &) are calculated we can use them to calculate
the function R,(#, ¢, s) according to (31) and the function V; (5, ¢,s) according to (35),
and to determine the values of  and ¢ for which the boundary conditions (28) and (30) are
fuifilled. A typical result is illustrated in figure 3.
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4. Wavefunctions and binding energies

To determine the wavefunction yr(r) of a constituent we have to determine the normalization
constant ag. Using the normalization condition (8) and equation (27), we obtain

2v¢ -

2

i i 37
% | E| (37)

where
a=ts [ @20 w@=ct [ seFRGL9. @9
0 1}

Notice that ¢ is the only parametér upon which « depends. Using (38) and the function
R, (1, £, 5) calculated above, o can be determined. A useful fit is

o = gp + 00 + cpo? ol N . - (39)

where oy = 3.52(2), oy = 10.9(2) and o, = 3.82(9). Using (37) and (27) we can write the
wavefuncnon in a dimensionless form:

E|2
' v )-2\/_ ad f ds e ™™ Ry (n, 3, ). (40)

Notice that the right—hand side of (40) is a function of the dimensionless quantities yr and
o only. Similarly, using (29} and (22) the potential function ¢ (r) can also be written in the
dimensionless form

;l—ng (r) = dne~ v [}w ds e™¥"V, (n, &, :9). (41)

In figures 2(a) and () we plotted the wavefunction and the botential function according
to (40) and (41) respectively for various values of o.

We define the binding energy E —my of a constituent particle as the difference between
its constituent energy E and its bare mass mp. To determine the constituent energy £ we
substitute (37) into the expression for ¢ provided by (22) and using % = m3 — E? obtain

1g2N
|E|(mf — B2 = £ “2)

Solving for |E] we obtain two solutions:

pe)
) a2t
« Mo g°N -

=—3{1l—-|1- 43
& NG) |: ‘(4n'mgos) } : (4+3)

and

12

o 2N 24172
AL [1 - (4er(23a)jl (44)
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which are real if g2N /4rrm§af £ 1. The first root is the constituent energy of each constituent
in the excited state, while the second root corresponds partly to the ground state and partly
to the excited state, depending on the value of &. Equations (43) and (44) imply that,

&* 1
0 —< — 45
< o ~= -\/E ( )
and
1 g
—_— g — < ], , 46
N2 T mo “)

Notice that £* is not larger than z, and nevertheless &* is assigned entirely to the excited
state. The reason is that, as will be shown below, the total energy (the mass) corresponding
to the bound state with constituent energy £* is always larger than in the case of a bound
state with constituent energy e.

In the case when po = 0, the function @ = oy = 3.52(2) is a pure numerical constant
and hence (43) and (44) are explicit formulae. Otherwise, & is a function of ¢ which itself
is a function of both parameters uo/mo and g. We will not need the explicit form of this
function, since o will serve only as a parameterization variable at fixed pp/mg. The allowed
range of o follows from

lp.'.g 1

° T Tmo 1= B/mo A (47)

which is obtained from the definition & = po/2y and from ¥ = m%— E*. Substituting (45)
and (46) in (47), we obtain respectively .

Luo <1”'°

—_—— 4
2m0<a\~/§mn (48)
and
LA s (49)
A2 mg

The coupling constant g2N /47rm3, for instance, is parameterized by o at fixed uo/mp via

1/2
N apg 1] ( o )2 50
s=—— 12— . (50)
4?1’!?10 OMg 4 TR

Equation (50) is obtained if one combines (42) and (47) to eliminate E. Using (50) we can
convert the dependence on ¢ in (43) and (44) to a dependence on g*N /4er§ and po/mp.
The result, &/mg and £*/myq as functions of g*N /43rm§ and po/mo, is plotted in figure 4,
The dotted line indicates the value 1/+/2 which is the boundary value deviding the two
functions. ’




Soliton solutions of relativistic Hariree equations 3611

1.0 Tt ™ T
[

g
";? b
0o
o 0.6 {—
g L
S
(]
o
g L
PR X
w

. py/my=0.40
Mo/ M=l 3¢
2o/ g=0. 20
Ro/tngm0.10
# o/ M gm0, 00
N i SN S B N

2 + 8 q

0.2~

g /anm?

Figure 4. The constituent energies ¢/my and &*/myp as functions of the coupling constant
g2N /4mm} at vasious fixed values of py/mo. The dotted line indicates the value 1/+/2 which
is the boundary value dividing the two functions.

5. Existence condition

Equations (43) and (44) imply that

2 o

&£ & ' (51)

0 <
dwmi N

since otherwise the constituent energy becomes a complex number, in which case the bound
state does not exist. In the case when pp = 0, ¢ = oy = 3.52(2) is a pure numerical constant
and hence (51) is an explicit necessary and sufficient condition for the existence of bound
states. . .

In the case when uo % 0 (51) is not suitable as an explicit existence condition, since
in this case & is not a pure number but rather a function of ¢ and thus of g?N /47w m? and
to/mg. To obtain the existence condition for the case when pg #£ 0, we write (50) as

1/2
£ _oem | SmY] o 52)
dgmi N omg 4 \ omg SN _

which is the parametrization of the coupling constarit in terms of o at fixed po/mp and N.
The inequality on the right-hand side of (52) becomes an equality for o = g /~/2my. Since
o varies in a definite range given in (48) and (49), equation (52) determines the allowed
range of the coupling constant, in which a bound-state solution is possible. In figure 5 we
plot g2 N/4zm3 as a function of ¢ for a few typical values of ug/mo (full curves). Notice
that g?N /4 m’ possesses a local maximum in the region of smaller o and a local minimum
in the region of larger o. From (52) and (39) we obtain '

1 uo | @ (1o 3%
= —— _— O ik
7 /2 my * Berp (mo) * ((mo) ©3)
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for the location ¢ = o7 of the local maximum and

2
oy = Kﬂ+o((—‘”’ﬂ)) (54)
[1.07) my
for the location o = oy of the local minimum. The respective accuracies of (53) and (54)
are sufficient for all practical purposes. This can be judged by locking at figure 5, where
oy from (53) is plotted as a vertical dotted line and op = +/eig/0z is plotted as a vertical

broken line. The maximum and the minimum split the allowed range of g?/4mwmy into three
regions: one to the left of the maximal value

g 1 ¢ 1ro

0<
dwm3 N dmm3 2 mo

<o Lo (55)

one between the maximal value and the minimal value

1 & & 1 &

— L0 < 56
NdgmZ = dxmi N dam SIS ©6)
and one to the right of the minimal value
1 _g g
— < o < 57
N dzm? = dmm? 0%9 ©7
where
2 2 2
& Ho 1{ ko ) o Mo #o)
———= =ul(c l——{—) =0+ —=—+0| | — 58
47{m% ( 1) O1#p 4 o1my 0 Ji'mg ((mo ( )

) R . .
g5 Ho L{ o oy Mo 0

= 1 —-= = (2 = =
2 % o (og) o 1 n ( ) ( ../Ctoot2+of1) S +0 (( ) ) &)

ooty o

and ¢ is given in (39). These three branches of the coupling constant correspond to three
different states (particles), and below it will be shown that (56) corresponds to the ground
state while (55) and (37) each correspond to a different excited state. Hence for the case of
Hg # 0 the model predicts a triplet of particles. Notice that in the case when ug = 0 (56)
becomes

2
o
g <%

< < =.
4emi N

- = : (60)

If for certain po/mg and N it happens that g?/4nm? is outside of the bounds defined
in (56) then a ground-state solution and a particle associated with it do not exist and there
are no stable particles in that case. Thus (36) is an explicit condition for the existence of a
ground state and its associated particle. Notice that (56} is in qualitative agreement with the
non-relativistic case of the Yokawa potential [5), where the ground-state solution is possible
only if the coupling constant f2/4s is larger than (1.6798/2)(1uo/ my).

In the case when the condition (56) for the existence of the ground state is violated
while (55) is fulfilled, the particle associated with the ground state does not exist while the
excited state does. However, as will be shown below, the mass of such a state is larger
than its bare mass. Hence this state is unstable and represents an unstable particle.
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Figure 5. g2N /4 mg as a function of o for various values of pg/myp (full curves). The vertical
dotted lines and the vertical broken line give the values of o) and oy for the maximum and the
minimum of g respectively, according to the approximate formulae given in the text.

6. Mass and bare mass

Instead of calculating the last term in (12) directly, we can use the virial theorem (this
theorem is proved in section 8) part of which is the relation

g 2_mo(mo _ |E| lﬁ%_fsz'
zfdm(rnwn —3(IE| m0)+3g2N Pre2r). (61

Substituting (61) in (12) we obtain

21E] 1mg 1 ud f . )
M=Nmy|s—=+=—=+-—02—|d 0. 62
m”(s e V3R T amgn ] CTE0) > ©2)

Notice that the total energy (62) is positive definite.
We first consider the case when o = 0. In this case the last term in (62) vanishes and

we obtain
271E 1m
=3 —_ —_— — - ' 63
M NmOS(mg+2|E[) _ (63)

Substitution of (44) and (43) in (63) yields

ZN 271/2
1\/1,\,=1\rmo‘/Ti 1+[1—( 5§ )}

dremgcl

2 ) 2N 2-11/2
+4xm0ag [ l—-( g X ) 64)
N dremiey

172
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for the ground state and

1/2] 42
N2 ( g*N )2
Myy = Nmp— 1—11-
ahld 073 dmwmion
‘ 1/2) 12
drmiay 2N Y
2= {14 {1 — 65
&N +l: (472’!1‘1%050) (65)

for the excited state. The masses of the corresponding constituent particles are
m= M1 m* = M11. (66)

Thus, for the case of yug = 0 the model predicts a doublet in the elementary particle
sector (N = 1) with masses m, m*. Notice that (64)-(66) imply that for fixed parameters
g*N /dmm? and Nmg

My < Myy m < m 67)

despite the fact that according to (44) and {43) £* £ &. The reason is that, besides the
contribution from the constituent energies (first term in (9)), the mass also receives a
contribution from the energy (second term in (9)) which must be spent to create the potential
in which the constituents are bound. This contribution compensates for the difference
between ¢* and £ and places Myy above My. Also notice that while Myy — oo and
m* — co as g = 0, My and m stay finite.

The state with mass Myy is the highest excited state with spherical symmetry, since
we have assumed that all of the constituents occupy the same state and that there are only
two bound states which each of the constituents can occupy. Our method, however, can be
extended easily to a situation where one or more constituents occupy the excited state with
the corresponding constituent energy & while others remain in the other bound state. The
resulting excited states will possess masses between My and Myy:

My < My Moy, € Myy. (68)
These are ali the possible spherically symmetric states, since otherwise there would be more
states than just a doublet in the N = 1 sector. Hence for the case of pog = 0, the total
number of states with spherical symmetry is
Nytages = N + 1. (69)
A further consequence of (64)-(66) is
AMy =Nm—My >0

which means that the ground state of the composite particle is stable against disintegration.
Similarly, one obtains

AMyy = Nm* — Myy >0 {70)
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which means that the excited state cannot decay by disintegration with emission of particles
of mass m*. '

Above we discussed the stability of the composite particle from the point of view of
disintegration. We now discuss the stability from the point of view of a comparison between
the bare mass and the physical mass. This criterion allows us to discuss the stability of
even the elementary particles of the theory. From (64)-{66) it follows that

2 ,
E__ <™ o My < Nmg (71)

0«
4J'rm0 N

for the ground state and

L —— & Myy 2 Nmg (72)

ﬁa’o g2 oo
< — N
>N < 4xm% SN < MNN < Nmy {73}

for the excited state. If we want to associate a particle with a self-interaction bound state,
then the result that the physical mass is larger than the bare mass means that such a particle
is unstable. The reason is that in this case some of its continuum states are energetically
preferable to the bound state. Thus from (71) we conclude that the ground state My is
always stable if it exists, while the excited state My y is unstable for smaller values of the
coupling constant g in the case of (72), and stable for larger values of the coupling constant
in the case of (73). The phenomenon of instability due to the mass being larger than the
bare mass is not new. It was observed, for example, for the ground state in the model
of [6], which is based on the nonlinear Schrédinger equation in three dimensions. In that
model one can give a formal proof (see [7] for the details) that the ground state is unstable
in the sense that its wavefunction suffers a collapse. i.e. being initially smooth it develops
a singularity within a finite period of time when subjected to a small perturbation. This
means that such a state cannot be associated with a stable free particle.

In the case of (73) the composite particle can exist as a stable (with respect to the
continuum states) particle with the mass My or Myy. For the mass difference we have

32 —
__QM

OQMNN_MN< 4 N (?4)

which amounts to less than 6%.
We now discuss the case when ug 3£ 0. Using (19), (22), (42) and (47), we obtain
where

"y e _1El),
5 45() (lEI o B (75)
16025

B= f dg ’§2¢u ) o (£) =& f ds eV, (0, ¢, 5) (76)
(24 0

0-

and Vg{r; £, 5) is defined in (25). Notice that 8 is a function of o only. To get some idea
of the behaviour of 8 the following fit is useful

1+ Bio

_13 = foo 1+ pro

<1 | amn
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where £y = 0.834, §; = 0.972 and g, = 2.93. The accuracy of (77) is about 1%. Using (75)
we can rewrite {62) as

M =Nm o-((l—ﬁ>'E'+ (1+2ﬁ)|—;E—|) — (78)

Substituting (43} and (44) in (78) we can obtain similar mass formulae to (64)—(66). More
convenient formulae are obtained if, using (52), we eliminate g2 N /4zm3 from (43) and (44)
and substitute the result in (78). The resulting mass formulae are

i 2 2
My = NmgE (cr, -"5'—9-) G020 2o =ty 2L (ﬂ) +0 ((&) ) 79
mo J_ 2mg 8o \ Mo my

1
Monw = NnpB (0 ﬂ) oL 20> hafeat) - (80)
my 2my

and

2
MN9N=NmoE(O”,-’£9-) - O>O>0p= Ia—o-}-O((ﬂ)) (8D)
mo (s3] Hlg
where

w(a @) 1- 30 - BYuofome? [ 1(ﬂ)2 "
A\ g 1—‘-1(;1.0/5»'1’1*10)2 4 \omy
_ L= ( o \'\ wo 4rmia
=(1_ 6 (o‘mg))o'mg gIN ®2)

The advantage of (79)-(81) is that, for a fixed pg/m¢ and Nmyg, they depend solely on
o. The dependence of My, Moyy and Myoy on o for various fixed values of wg/myg is
illustrated in figure 1(b). In this figure My/Nmg is plotted with a full curve, Moxwy/Nmg
with the broken curve and Myqy/Nmg with the chain curve. The dependence on ¢ can be
converted to the dependence on g2N/4mm3 via (52)

1/2 .
N Ko (o Y
=g—|1—-—-{ — ; (83}
4n'm§ Lo 1) 4 \omy

The result is illustrated in figure 1{z). In both figures the dotted vertical lines correspond to
the maximal values of g2N /4er§ according to (32) (¢ = o), while the dotted horizontal
line corresponds to the absolute minimum of the mass M/Nmp = 2+/2/3, which occurs
at po = 0. Hence we observe that the mass My of the ground state acquires a minimum
value at the maximal value of gz/4j'rm§. ‘We make a similar observation with respect to the
maximal value of the mass My: this occurs at the minimal value of g?/4zm3 according
to (52) (o = op). Notice that, except for the case when pg/mg = 0, part of My including
the maximum resides within the continuum, i.e. above Nmyg, signalling an unstable state.
This part becomes larger with increasing peq/mg and starting with wo/mg = 0.36 all of the




Soliton solutions of relativistic Hartree equations 3617

mass My resides within the continuum. This means that for a stable ground state the mass
of the exchange particle cannot be too large: o < 0.36mq. i

In the case of elementary particles of the model (N = 1) we have a triplet with the
" corresponding masses

m=M  m=Mmn m* = Mlo; (84)

which are obtained by putting N = 1 in {79)+81). This fact is in contrast to the py =0
case where there was a doublet, and is a clear indication that the mass is not an analytic
function of g at 4o = 0. The mass is also non-analytic at g = g1, where it has a minimum,
and at g = gy where it has a Jocal maximum (see equations (58) and (59)). Otherwise it is
an analytic function of g2N/4mwm? and po/mo.

The appearance of a triplet with different masses and different constituent energies at
the same values of g>N /4wm} and 1/ mo indicates that there are other states with spherical
symmeiry, which can be labeiled by the number of constituents in each of the two excited
states. The lowest-mass state M)y is the ground state, where none of the constituents resides
in an excited state. Then there are states My ._; » Where n constituents reside in an excited
state, k£ of them in one of the excited states and n — & in the other one. Since all these states
are spherically symmetric, our method can be easily extended to include them. Basically,
the only significant change in this case is the tripling of the basic equations, so that we
would have six coupled equations instead of two. Since in the present case there are no
other states beyond the triplet, it is fairly clear that these are all spherically symmetric states
of the model and that their total number is

Ntates = 5NN + 1) + N + L. L (85)

Thus in this model there are three elementary particles (triplet), six composite particles with
two constituents (sextet), ten composite particles with three constituents (decuplet) etc.
One of the most basic properties of the masses as functions of g?N/4mwm3 at fixed

Mo/ mo is
g?N _ g’N N M LM
dam? ~ dwm} " Nmo = Nmg

(86)

where M’ and M are any of the masses My, Myoy, Moyy, m; m* and m** evaluated at
g2 N/4nwm? and g*N/4mm3 respectively. An immediate implication of this result is that

AMy=Nm—My >0 i (&7)
AMQNN = Nm* — MONN >0 i (88)
AMpyoy = Nm™ — Myon > 0. 7 - (89)

Thus none of the composite particles can decay by disintegration and, in particular, the
ground state is absolutely stable whenever its mass is below the bare mass. In the case when
any of the masses is larger than the corresponding bare mass, for instance Myoy = Nmp
always, the particle with that mass is unstable as discussed above.

One of the striking features of the mass (total energy) as a function of the coupling
constant g/4mm} is the appearance of a strongly pronounced unigue minimum at each
fixed value of pp/mp and N (see figure 1{a)). These minimal values of the mass and the
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corresponding coupling constants can be determined from (79), (52) and (53) and, to first
order in po/my, are given by

272 Bo Mo g 1 ( o #o)
My = Nmg——( 1 + —=— = — + o= N=1,2,...
V=R (+2Jirno) dzmy N T Famg

®0

where oy = 3.52(2), oy = 10.9(2), fo = 0.834, The fact that the physical mass of a particle
possesses such an absolute minimum was noticed earlier in [6] in connection with some
other model, where it was emphasized that this phenomenon might be a general one and
might have some deep significance (some speculations are discussed in [3]).

7. Size parameter

The size parameter ro has been defined in (13). Substituting (27} and (37) in (13), we obtain

5 5
= —= 1)
¥ fm% — E2
where
=% [Taere e ©2)
& Jo

and W, (&) is defined in (38). As in the case of o and §, the function & can also be easily
computed, once the integral equation (26) above is solved. A useful fit, which is accurate
to about 1%, is

é
3=;0\/1+81o'+820‘2 c<1 (93)

where 8o = 8.4, 8; = 1.35, 8; = 5.75 and ¢ is given in (39). Thus

13 <8 <24 (94)
In the case when ttg = 0, we have o = 0 and hence using (43} and (44), we obtain
: 12y V2
5 280 drm? 2N Y
ro = s=ﬂ’”’?° 1+ 1—(g2 ) (95)
eg* my geN 4T mgcl
for the size of the ground state and
121 172
LI Y13 M P L ©96)
07 e T myg 22N 49rm%ao

for the size of the excited state. Notice that rg — co as g/mg — O while rff stays finite.
This singularity disappears when pg % 0, since in this case g 2 go > 0 (see equation (59)).
For the case of minimal masses, equation (90) for po = 0, the sizes are

1 /25

my op

©n

rp=ry=

For the ground state (97) corresponds to the minimal size, while for the excited state it
corresponds to the maximal size.
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8. Derrick’s theorem_and proof of local stability

Derrick’s theorem [8] refers to time-independent solutions of a class of nonlinear equations
for real scalar fields and it consists of two parts. The first part is the virial theorem and the
second part is the proof of local instability. We now recall Derrick’s theorem and discuss
some of the problems connected with it; We then generalize this theorem to a class of
theories which contains the model investigated in this paper, and derive the conditions of
local stability. In particular we prove the local stability of the ground-state solution studied
in this paper.
Consider the Lagrangian for a real scalar field 8

L8V _ ey _
‘C’z((a:) (V) f(G)) (98)

and the corresponding equation of motion

828 1

AR — = = —
a2

f'® (99)

where f is a smooth function. A time-independent solution 8 ()} of (99) corresponds to the
extremum 8§ H = { of the energy functional

H= f Eri(Ve: + fF =1 + L. (100)

Using this fact and a particular form of the variation §H, Derrick proved that the kinetic
part f; and the potential part [> are related according to

L+3hL=0. S ’ (101)

Equation (101) constitutes the virial theorem. In the case f(8)} = 0 this theorem precludes
the existence of time-independent solutions of {99} since in this case both [; > Oand [} > 0,
which contradicts (101). If () = 0 is not valid, the energy H is not bounded from below
and hence a time-independent solution of (99) can be stable at most locally. However, using
a particular form of the variation, Derrick showed that

§*H =21, < 0. (102)

Local stability requires 824 > 0 (local minimum of the total energy) for all possible
variations, but to prove the local instability it is sufficient to show that 82H € 0fora
particular variation, so that (102) implies that all time-independent solutions of (99) are
locally unstable. Equation (102) constitutes the second part of Derrick’s theorem. Shortly
after Derrick’s paper Rosen [4] proved that 8 # > ( is the necessary and sufficient condition
for dynamical stability in the sense of Liapunov. ]

In the subsequent repetitions of Derrick’s theorem (see for instance [9]) the second part
of Derrick’s theorem was dropped and the local stability condition 8°H > @ replaced by
the much stronger condition f(8) 2 0. However, if one admits time-dependent solations,
in particular stationary bound-state solutions of the form W(r, ) = e~y (r), then the

fatter condition cannot be justified in general and the former, contrary to (102), can now
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be proved for particular cases. Thus in particular cases, at least locally, stable bound-state
solutions are possible. A simple illustration of this fact is provided by

(C—mi+ gg(U ¥y W =0 l<g<} (103)
where 00 = A — 8%/91%. The local stability of stationary bound states of (103) was proved
in [10]. Notice that the energy corresponding to (103) is

aur* gw
ar ot

H= f d>r [V\If* vV + m%‘IJ*\If—g(\I!*\I’)‘I] (104)
and that the interaction potential (fast term in (104)) is strictly negative (g is a positive
constant) and unbounded, and nevertheless the ground state has a finite energy and is
locally stable. The proof of local stability for the non-relativistic analogue of (103) and
other examples of stable theories with a non-positive interaction potential can be found in
[7] and references therein.

Consider now a system of N complex scalar fields ¥;(r,z), j = 1,..., N and a real
scalar field & (», t) with the Lagrangian

N _
Lo=~"(0" W73,V +mp¥y; — g P (U} ¥))9) — 1(3" 98, ® + p§d?d) (105)

=1
and the equations of motion

(O — m+ gg®? (LT W) )Y =0 (106)

N
(O— ud)® = —gp®™' ) (¥ ) (107)

i=1

where myg, g, p and g are real positive constants and the fields ¥; are normalized according

to
f &Fr

Notice that the left-hand side of (108) is a constant of motion. There are four important
special cases to notice: p = g = 1 gives the model investigated in this paper, p = 0 yields
the case of (103), and ¢ = 0, p = 3 yields the standard @3 field theory, while g = 0,
p = 4 yields the standard ®* field theory. The local stability condition for the second
case has been derived in [10] and the existence of stable bound-state solutions in the latter
twe cases has been ruled out already by Derrick's theorem. We now generalize Derrick’s
theorem to the class of theories characterized by (103)}—(108) for the case of time-dependent
but stationary bound-state solutions of the form W;(r, 1) = ¥;(r)e~ &, &(r,r) = o (r)
and for the case of arbitrary p and ¢. Since this class is Jess general than in the case of
Derrick’s theorem, we will benefit by being able to derive two additional virial relations.

For stationary fields the equations of motion (106), (107) and the normalization
condition (108) become respectively

(A — v} +gq0” (T =0 ' (109)

oWt B\If
at ot

=1  j=1,....N. (108)

N
(& — pd)d = —gpdP~' Y (Win)* (110)

i=]
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and
{1y EZEEﬂfda"f' ;) =1 j=1,...,N (111)

where yf = mj — E? > 0. The corresponding total energy is

N
H = f dSr( D OIVYS Vi + (B mply — 207 (Ui + 51(VH) + p.%dﬁ)
J=1 )

=H +H,— H+ H; + Ha.
(112)

Notice that (111} implies
N
- N A I ]|
Hz_Z[fE,H > (}EJ mo)]. B (113)

In order to make the variation of the energy §H we have to choose a proper energy
functional. Equations (111) tell us that we are dealing with a constrained system. According
to the standard rules of quantum mechanics there are two ways to perform variation of the
energy § H for a constrained system. The first [11] is to use an energy functional which does
not depend on the norm of the variational functions corresponding to ;. The second [12]
is to introduce the normalization condition by real Lagrange multipliers. Both ways are
equivalent, but for our purposes the first is more convenient, The unique functional of
the variational fields v,; and ¢, which fulfiis the above requirement and which reduces
to {112} in the case ¥, =Y, ¢r =@ Is

N [Tyt - Vg + (B2 + mdy) v Wt )
HOD = d3 Aj f J Q/ ¥ Aj 7 _ Il AjTAS
= "J};—]:[ sV ST T
+1 f Pr{(Vé0)? + 126, (114)

Now to perform the variation 35 we have to choose a set of variational fields 7 and ¢,
which is large enough to yield all the solutions of 8H = 0 or, equivalently. the equations
of motion (109) and (110). A suitable set of variational fields is

Yai(r) = Al () Y (r) = A" Y () oa(r) = Ap(Ar) (115)

where ¢ is an arbitrary complex and A and 5 are arbitrary real numbers. The variational
fields v;; are not normalized except for A = 1 in which case the normalization is defined
in (111). For A = 1 we have )

Y1 (7} = P (r) ¥y =47 (r) DTy =¢(r) H(1)=H. (116)
The variations v;, 8y, 8¢, §H and §>H are defined by -

) AP - V)
A=1 :
{117)

da

S = (-‘f'fﬁ =tp(r) - V() Syt = (
a /i : _
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and

N2 AN . _(dHM)
S¢l= (E>‘1=1 = S¢(T) +r V¢(T) §H = (.—_dk >l=1
d?H(\)
2 _— — -
5 H_.( e )M. (118)

Notice that at each r the variations 8y, dyrf and 8¢ are arbitrary and independent of each
other. Therefore, applying the standard variational procedure of quantum mechanics, we
conclude that § H =0 is equivalent to (111)-(112).

Since the integration in (114) is over the entire space, we can eliminate the dependence
of the fields on Ar by making a suitable rescaling of the integration variable and obtain

HQ) =2\2H, + Hy — 3P0 4 a5 g 4 A% |, (119)

where Hi, ..., Hs and Hy, which are independent of A, are defined in (112). From (119)
and 8 H = Q it follows that

2H = [sp+3(@—DIH + (2s - DH; + (25 — 3)Hy = 0. (120)

Since (120} must be valid for all s, it implies two separate virial relations

2H; +2Hy - pHr =0 (121)
and

2H,— H; —3Hs—3(g —1)H; =0. (122)
Moreover, muitiplying (109) by ¥, integrating over the entire space and summing over all
j=1,..., N, we obtain a third independent virial relation

N -
Hy+ Hy—qHr =Y |El. (123)
=1

Combining these relations one can obtain other useful relations. For instance, eliminating
Hy and H; and using (113) we obtain

2 o (Mo B
(3—q)— PIH; +12(3—q) —3plHs =m0 ) T R
=1 7 0

Since Hi, H; and the right-hand side of (124) are positive numbers, we obtain a necessary
condition for the existence of bound states

283—-g)—p>0. (125)
Another useful relation is obtained if we eliminate H; from (124) by means of (121)

N
4 Hlp |Ej|)

— — — plH = —_— —— | +2pH;. 26
2[2(3 q) — plH; moj=] (|Ej| . pHa (126)



Soliton solutions of relativistic Hartree equations 3623

This is the equation (61) which we used above to determine the mass.

Now we compute the second variation of the energy 5> H and derive the local stability
conditions which ensure that §2H > 0 for all values of s and ¢, which are the parameters
spanning the set of variations. Equation (119) implies ’ ‘

§2H = 2H; —[sp+3(g—D]lsp+3(g—1) = 11H; + (25 — 1) (25 — 2) H3 + (25 = 3) (25 —4) Hj.
(127}

Eliminating H1, H3 and H; by means of the virial relations (121), (122) and (124), we
obtain

2 _ 2P2— p)s®—4p(3g —2)s + 3p 6(g —DBg -3 & ( me 1B
vH = G—g) - mo 3 7 mo)
+{[2p(2— p)s* — {12p(g — D)+ 8B — ks —3p+ 123 - ¢)
—6(g — (3¢ —35)]/(2(3 — q) — p)}2H,. (128)

Consider the case when. o = 0. From (112) we have Hy = 0, and hence (128) implies that
82H > 0 is equivalent to ’

2p(2— p)st —4pBg ~2)s +3p —6(g — 1)(3¢ —3) > 0 so =0. (129)
The solution of this inequality is _ -
{@-p—t2-pl<g<i@-py+gl2—-pl  po=0. (130)

Notice that for p = 0 (130) coincides with the local stability condition proved in [10],
which we quoted in equation (103). Also notice that the only positive integers p and g
which can satisfy-(130) are p = 1 and ¢ = 1, which is the case investigated in this paper.
To have a sensible field theory p and ¢ must be positive integers. Therefore the result——that
stability alone restricts the choice among the class of theories defined by (105) to just one
case: p =g = l—must be considered as satisfactory.

For each p and ¢ obeying (130), the local stability for a sufficiently small o % 0
follows by continuity of H;. The local stablhty condition 82H > 0 implies an upper bound
on ug. For instance, for p = 1 and ¢ = 1 we substitute equation (75) in (128), which in
the present notation reads

E
Hy = pmoN (ﬂ - '—-') (131)
|E]  mo
and obtain the local stability condition for the ground state '

1+88 31+148 o

2

_ 54 = )
S22 T T O | (132)

which must be satisfied for all real s. Solving for 8, we obtain

g < 12_1 (1 + 31/——) (133)

4
and then using (77) and (79)
o<1.0 o < ~2mg. (134)

Thus 2 locally stable ground state for the theory investigated in this paper (p = g = 1)
exists only if o < 1.
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Appendix

In this appendix we develop a simple algorithm for the numerical determination of the

functions needed for the evaluation of the functions R, and V,. As a first step we split the
recurrence relation (32) into three separate parts to avoid multiple integration

¥
Onm(y, 0) = '/; df pum(t, &) , (135)
(3.0) = : ( (v,
D (Vs = (y+no‘+m+%)2—§ Pn-laY, )
n m ¥
Y f dtPniem—1 (Y = 1. 0) fuC, a)) (136)
k=0 1=1 Y0
and
y= ! ( ¥, o)
fnm(yao' = (y+ncr+m)2—0'2 Onm-1Y, T

+ Z Z fuy A @n—t i (Y — 1, OVPr s (2, a)). (137)

k=0 I=1

It is easy to see that these equations are explicit recurrence relations, rather than integral
equations. In order to convert these recurrence relations o a form digestible by computers,
we divide the interval [0, y] into A/ pieces each of length x and use the trapezoidal rule
to evaluate the integrals. As a result of the discretization we obtain a new set of functions
Bums X ) P (X7, 0) and 7, (x;, o) defined on the grid of points xp = 0, xy, ..., Ty = ¥,
which cenverge to the true functions @am,(x;, o), Onm(xj, o) and fom(x;, o) as x — 0. The
corresponding recurrence relations are

Banls ) = Ty (51, 0) + 35 @51, 0) + G (17,00) (138)

~ o 1 _ X— X Bpm1 (%), 0)
¢nm(xf‘1 J) =(,X.'J, +no+m+ %)3 _ _:_ (‘an—l,m(xj‘a) + Efnm(xj"JJ + E ),

n m j—i L
233D Fackmet 0 = 21, 0) P, a)) (139)

k=0 =1 j=]
and
— I3 — X— xan-l,m-l(xj’ o)
Famxjo) = Pr————; (99;;',11—1()6], o)+ E‘pn,m—](xjs o)+ I et

n m j=I
tx Z Z Y Prkmt ¥ = xi, OV (s O’)) (140)

k=0 [=1 =1
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where x, = jxand j=1,..., M, n=0,1,..., m =0,},.... The initia]l data for the
FECUTTENCE Process are :

G mlx, 0} =0 Bn 15, 0) =0 @G, o) =0 (141)
except for n = m = 0 in which case
G0, 0)=1 - - (142)

and

Py _1(x5,0) =0 $m0,0)=0 (143)

except for n = 1, m = 0 in which case

100, 6) = (144)

oo 4+ 1)

The recurrence process siarts with the evaluation of the cycle (140) — (139) — (138)
forn =m =0and j = 1. Then n, m and j are iterated until certain maximal values,
Jmuxs Amax a0d Mo, say, are reached, which are determined by the step function in (31).
The result of the recurrence process IS @pm(X1. &), .-, Cpm(Xjpr: ). = 0, ..., Py,
m =0,..., My In order to obtain an estimate of the difference between 9, (x;, o) and
@nm(xj, 0), the grid is refined by replacing NV by 2N and x by x/2, and the recurrence
process is repeated. The resulting @, (x2, o), @,, (x5, o), ... are compared with the
previously calculated @, (x1, ¢), @,,,(x2. 0),.... The process terminates when a certain
specified accuracy is reached and the @, (x|, o), @, {*2, ), ... can be considered to be
identical to @pm (X1, ), @am (X2, ), ... - Notice that the numerical evaluation of the functions
Pnm does not mean that we are solving the problem numerically. Rather, it means that the
solution (31} is given in terms of non-standard functions and that we have to ieach our
computer to obtain the values of these well defined analytical functions.
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