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Soliton solutions of relativistic Hartree equations 

Nathan Poliatzkyt 
Institut f"r Theoretische Physi!q ETH-HBnggecberg, CH-SO93 Ziirich. Switzerl+d 

Received 14 September 1992, in final form 5 April 1993 

Abstract. We study a model based on N scalar complex fields coupled to a scalar real field, 
whece all fields are treated classically as c-numbers. The model describes B composite particle 
made up of N constituents with bare mass mg interacting both with each other and with 
themselves via the exchange of a particle o€ mass go. The stationary nates of the composite 
particle are described by relativistic Hartree equations. Since the self-interaction is included, 
the case of an elementxy panicle is 3. non-trivial special caseof this model. Using an integral 
transform melhod we derive the exact ground-stare solution and prove its local stability. The 
mass of the composite particle is calculated as the total energy in  the rest frame. For the case of 
a massless exchange particle the mass formula is given in closed form. The m s s .  as a function 
of the coupling constant, possesses a well pronounced minimum for each value of m~o/mo, while- 
the absolute minimum occurs at f ig = 0. 

1. Introduction and main results 

In this paper we derive and study the exact ground-state solution in 3 + 1 dimensions for 
a self-interacting system whose dynamics is governed by the relativistic Hartree equations. 
Our motivation is to study bound states formed solely by self-interaction. Such bound 
states (sometimes called non-topological solitons) offer a possibility of understanding the 
internal properties of particles, such as their masses, charges and magnetic moments. Self- 
interaction is a purely nonlinear and non-perturbative phenomenon which is neither well 
understood nor properly appreciated at present. However, we argue that in the quantum 
domain it is important and deserves close study. It may be the crucial missing element in 
our understanding of quantum phenomena. Self-interaction appears frequently in quantum 
field theories such as, for example, in quantum electrodynamics, where it leads to infinities. 
Intuitively, the reason why these infinities appear is that we are using a perturbation theory 
in which particles are associated with free fields such as plane waves or wave packets. The 
fact that one is able to cure the theory and remove the infinitid in a self-consistent manner 
can be seen as an indication that the original theory, before the perturbation theory based 
on free fields is applied to it, is correct and should merely be treated differently. What 
is needed, perhaps, is an approach which~is based on self-interaction bound states instead 
of free fields. An attempt at such an approach for the case of quantum electrodynamics 
will be presented in a forthcoming paper. In the present paper we attempt to present the 
self-interaction bound states in their own right, within the context of a classical field theory. 
In doing so we will concentrate on their internal properties in which they differ so much 
from free fields. 

The following model is motivated by its simplicity, self-consistency and by the fact that 
it is connected to the large Nc limit of QCD. It is not intended to be realistic in the first 
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place. Yet some of its elements, for instance relativistic invariance, dimension 3 + 1 and 
the nonlinear interaction, are cl&ly realistic. 

We consider a system of N complex scalar fields V!j(r, r), j = 1, . . . . N and a real 
scalar field Q ( T ,  t )  with the Lagrangian 

N 

L = - x ( a u G ; w j  + m i q $ j  - g&p(w;wj)q) - ; ( a V w h  + p 3 ~ * )  (1) 
j = l  

where p = q = 1, and the equations of motion 

(0 -mi  + g Q ( r ,  t))~j(j(r, t )  = 0 (2) 

where 0 = A - az/atz aya,. All the fields'are assumed to be classical, i.e. commuting. 
Notice that the interaction term in (1) is not positive definite and hence the stability question 
arises. In this paper only the local stability is investigated in full detail. Here it suffices to 
say that stable one-particle and many-particle bound states exist, with energies below the 
threshold to the continuum states, provided ceflain restrictions are placed on the coupling 
constant g and on polmo. The fields Wj are normalized according to 

Notice that the left-hand side of (4) is a constant of motion. In the present context the 1 on 
the right-hand side of (4) is purely conventional, in fact we could equally well have chosen 
any other number. However, equations (2) and (3) allow for a rescaling of the fields, which 
can be chosen to restore the 1 in (4). The fact that W j  are complex fields and hence are 
normalized according to (4) is an essential one since otherwise the model would contain 
po = mo, Q = Q as a special case and then it would be identical to the standard Q3 model 
which is unstable even locally. 

Equations ( 2 x 4 )  admit plane wave solutions with continuous energies I EI;[ = kZ +mi  
2 mo 

where SZ is an arbitrarily large normalization volume (a detailed discussion of plane wave 
solutions in the context of non-topological solitons is given in [I]). As will be shown 
below, the characteristic feature of these states is that for any N their total energy is always 
positive and larger than the corresponding bare mass Nmo, i.e. E,,, Nmo and hence on 
the energy scale these states fill the continuum above Nmo. 

In contrast to the above continuum states there exist bound states with total energies 
0 e Etou e Nmo. In the rest frame of the bound states the corresponding stationary state 
solutions of (2) and (3) are of the form qj(r, t )  = tli.(r)e-iEJf and Q ( T ,  t )  = $ ( T ) / g ,  where 
[Ejl e mo. For these stationary fields the equations of motion (2), (3) and the normalization 
condition (4) become, respectively, 

(A - Y; + @(~) ) !h j (~ )  = 0 (6) 
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and 

where y,? = in: - E,’ > 0. Once a solution is obtained, it can be Lorenu-boosted to an 
arbitrary inertial frame. Equations (6) and (7) must be supplemented with suitable boundary 
conditions (they are discussed below). 

This system comprises a model of a composite particle made up of N spinless 
sonstituents of bare mass mo and the constituent energies IEjl, which interact with each 
other and with themselves via the exchange of a particle of mass PO. ~ We identify the 
physical mass M of the composite panicle with its total energy Etod.  The total energy 
follows in the usual way from the Lagrangian (1) 

The gradient term (Vq5)’ can be eliminated using (7) and we obtain 

M = / d3r 9.. . V ~ j  + (E,’ +mi)@;@, - $qW;”@j]. 

Eliminating the remaining gradient term by the aid of (6) and using the normalization 
condition (S) ,  we get 

For the continuum states given in (5) the last term in (9) vanishes as ‘i2 -+ 00 and hence 
43,~ = -xf”=, IEjI = E,”=, IEk, I > Nmo. In the case of bound states the last term in 
(9) does not vanish and hence the total mass is not identical to the sum of the constituent 
energies lEj/ (i.e. to the sum of the bare masses mo and the binding energies mo - /Ell of 
the constituents) but contains an additional term. Below we will show that for stationary 
states this term is strictly positive. While the binding energies can be interpreted as the 
energies which are gained by putting particles in an attractive potential, the last term in (9) 
represents the energy which must be spent to create the potential itself. In a consistent field 
theory these two sorts of energies are interdependent and always appear together. 

In the case of N = 1 the mass formula (9) defines the mass of an elementary particle, 
which we denote by m. It will be shown below that for stable bound-state solutions of 
( 6 x 7 )  we have m Q mo and hence the ground states of particles are bound states and not 
the continuum states for which m = mo. It is therefore not an assumption, but a necessity, 
that in this model the particles are described by self-interaction bound states rather than by 
plane waves or wave packets. The main aim of this paper is to solve ( 6 x 7 )  for the ground 
state and to determine the dependence of the total mass M and the size parameter ro on 
the coupling constant g, the bare mass mo, the mass of the exchange particle c ~ o  and the 
number of constituents N. 
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In a situation in which all of the constituent particles are in the same spherically .~ 
~ , 

IEl~ < mo and @ j ( ~ )  +(T) = @(r)/&, the system symmetric state with IEjl 
of equations (6)-(7) simplifies to 

where y2  = mi -E2. Since we &e mainly interested in the properties of the ground state, 
which is the lowest-energy solution of (10)-(11). we can restrict ourselves to this situation. 
For the mass we obtain 

Contrary to the case of plane waves, the particles in the present model are extended. 
As a measure of their spatial extension, we define the size parameter 

ro = 21EI d3rrl+(r)1* (13) J 
where the factor 21EI stems from the normalization condition (8). 

follows from the fact that (7) possesses the well known solution 
The stationary states of the composite particle are described by Hartree equations. This 

which, if inserted in (6), gives the usual Hartree equations with the effective potential V(T). 
Notice that the self-interaction (i = j )  is included in the Hartree equations and therefore the 
case of an elementary particle, where N = 1, is a non-trivial special case of this model. In 
addition notice that in the present model the Hartree equations are exact and not approximate 
as in the usual case. The model would be more realistic if the constituent particles were 
fermions. Yet, despite this shortcoming, it is useful. For instance, it was shown in [Z] that 
baryons in the large N ,  limit of QCD are described by non-relativistic Hartree equations 

[v' + 2mc + rp(r)]x = o (15) 

where 

E is the binding energy, m is the quark mass and x is the non-relativistic single-quark 
wavefunction which is normalized according to Sd3Tlx(T)l2 = 1.  Very briefly the reason 
for this is the following. The colour part of the baryonic wavefunction is a singlet, which 
is antisymmetric, and hence the rest of the wavefunction must be symmetric.  the colour 
and spin degrees of freedom can be neglected in the lowest order of approximation and, 
at the scale of hadronic bound states, the linear (confining) part of the potential can also 
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b e  neglected. Neglecting the relativistic  kinematics and certain many-particle effects: the 
resulting equations are the non-relativistic HBrtree equations (15)-(16) for N identical 
quarks. In this paper we will include the relativistic kinematics’ and solve the relativistic 
Hartree equations (6)-(7), since our method works equally well in this case. 

Thus, applied to the quark model, V ( r )  in (14) with go ’= 0 can be interpreted 
as an effective potential in which dressed constituent quarks are bound. The quark- 
quark potential for point-like quarks is g2/[4n(Zm)2r], which is obtained by substituting. 
I+i(r‘)12 = S(r’)/2m in (14). Comparing this potential with the QCD motivated quark-quark 
potential for point-like quarks, 4o1,/3r, we obtain 

g2 ~ ‘ 4 a , ( m )  -=- 
4n4m2 3 

where ff,(m) is the strong running coupling constant of QCD taken at the mass m of 
the constituent quark. Equation (17) can be used to relate the results obtained for the 
present model to the large N, limit of QCD. The relation to the non-relativistic Hartree 
equations-(15)-(16) is determined by gn = g2N/4x4mlEl and 2me = -y2. In [Z] two 
main conclusions were drawn in arriving at Hartree equations (15)-(16). First, provided 
that g‘ does not depend on Nc (i.e. g m.l/&), the baryon masses increase linearly with 
Nc. This is an immediate consequence of (12). Second, under the same provision, the size 
and shape of the baryons do not depend on N,. This follows from (13) for the size and from 
(10)-(I 1) for the shape. However, to derive further conclusions concerning, for instance, 
the mass spectrum or the dependence of the mass on the coupling constant, requires the 
solution of the system (10)-(11).- We will take up these issues here in a more general 
context where go is arbitrary: Besides the connection to QCD, the model is useful in its 
own right since it is self-consistent, the dimension is natural (3 + 1) and the interaction is 
realistic (exchange of particles) and includes the self-interaction. Therefore, it allows .us to 
study the internal dynamical properties of particles such as the relation between the bare 
mass ma and the physical mass m, or the dependence of m on the coupling constant g. 

The main results of this paper are as follows. 
(i) Mars. For = 0 there is a doublet of spherically symmetric solutions inthe N = 1 

sector, which corresponds to a doublet of elementary particles with masses m and m*, where 
m < m*. Consequently the composite particle with N constituents possesses N + 1 states 
with spherical symmetry, which can be classified according to how many of the constituents 
are in the excited state. The lowest state.of the composite particle on the energy scale is 
the ground state with the mass MN given by 

where a0 is.a numerical constant. 
For go # 0 there is a triplet of spherically symmetric solutions in the N = 1 sector, 

which corresponds to a triplet of elementary particles with masses m, m’ and m**, where 
m < m* and m < m**. Consequently the composite particle with N constituents now 
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possesses N(N + 1)/2 + N + 1 states with- spherical symmetry, which again can be 
classified according to how many of the constituents occupy one or other excited states. 
The dependence of MfNmo on g2N/4xmi forvarious fixed values of fiolmo is illustrated 
in figure I@). In this figure the ground state is plotted with a full curve, the excited state, 
having all of the constituents residing in the state *, is plotted with a broken curve and the 
excited state, having all of the constituents residing in the state **, is plotted with a chain 
curve. Notice that, for each value of polmo, the mass M of the ground state acquires a 
local minimum at the maximally allowed value of gZ/4zmi (dotted vertical line), which 
becomes the absolute minimum M/Nmo = 2&/3 in the case go = 0 (dotted horizontal 
line). The appearance of such well pronounced minima of the mass may be a phenomenon 
which is more general than one restricted to the present model (see [6], for instance) and 
hence may have some deeper significance (some speculations were discussed in [3]). 

(ii) Size. For po = 0 the size parameter of the ground state is given by 

where 80 and a0 are certain numerical constants. For the ground state ro + 00 as g/mo + 0. 
This singularity disappears when f i0  + 0. For the case of minimal mass the size parameter 
of the ground state also becomes minimized too and is given by ro = &&/aomo. 

(iii) Stubiliry. The stability properties are investigated according to three independent 
criteria. The first one is based on the mass defect A M  = Nm - M ,  where M is the mass 
of the composite particle and m denotes the mass of its free constituents. We found that 
the ground state is stable against disintegration, i.e. AM > 0. 

If the mass of a particle is larger than its bare mass, then such a particle is unstable. The 
reason is that, in this case, some of its continuum states (for instance the states in (5)) are 
energetically preferable to the bound state of the particle. According to this second criterion, 
in the case PO = 0 the ground state is stable. For # 0 the ground state is unstable for 
smaller values of the coupling constant and stable for larger values (see figure I@)). For 
f i ~  > 0.36mo the ground state becomes unstable for all possible values of the coupling 
constant. 

> 0, which means that a bound-state 
solution is locally stable if it corresponds to a local minimum of the total energy (8Etoa = 0). 
This criterion was shown by Rosen 141 to be necessary and sufficient for adynamical stability 
in the sense of Liapunov. In the present paper we prove that for /LO < &mo the ground 
state is locally stable. Moreover, it is proved that our model is the only option with locally 
stable bound states among the class of theories based on Lagrangians of the form (l), where 
p and q are arbitrary real positive constants. 

(iv) Existence condition. A short-range interaction cannot produce a bound state unless 
the strength of the interaction is sufficiently large, i.e. the coupling constant is larger than 
a certain limit. If the system is relativistic then, in addition to this constraint, the coupling 
constant must be smaller than a certain limit. For the present model this existence condition 
is given by 

’ 

The third stability criterion’is bas,ed on 

z2 < 1 g: -- ’ g: <- 
N 4 z m i  4 z m i  M4zmi  

where go and gl are certain functions ‘of h / m o  and are independent of N .  
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0.76 1 L.5 

U 

Figure 1. (a) The mass to bare mass ratios M N / N m e  (full curve). Ma,vN/Nmo (broken curve) 
and MNoNINmo (chain curve) as functions of g 2 N / 4 i i m t  for various fixed values of po/mo. 
Dotted verfical lines correspond to the maximal values of g2N/41rm& the dotted horizontal 
line wrresponds to the absolute minimum of the INSS MINmo = 2&, which occurs at 
p = 0. (b)  The mass to bare mass ratios M / N m e  (full curve), M l a N / N m o  (broken curve) 
and M N w / N m o  (chain curve) BS functions of U for various fixed values of @o/mo. Dotted 
vertical lines correspond to the maximal values of g Z N / 4 r i m i  (a = a]). the dotted horizontal 
line corresponds to the absolute minimum of the mass M / N m o  = 2 4 l 3 ,  which occurs at 
p=o .  

(v )~  Wuvefunctions. Equations (10) and (11) are solved using an integral transform 
method. The resulting wavefunctions are plotted in figures 2(u) and (b)  for various values 
of the parameter U = po/2y, where yz  = mi - E' > 0. More precisely, the scaled 



3604 N Poliatzky 

functions IE11/Z@(r)/y3/2and b ( r ) / y 2  are plotted, since in this form the wavefunctions are 
both dimensionless and depend on the dimensionless variables y r  and o only. Notice that 
$ ( r )  z 0 for all r .  There are no bound-state solutions for the case $(r)  < 0. 

l " " " " ' " " " " " " " ' " " ' I  

Figure 2. [a) The wavefunction $(r)  plotted as a function of the dimensionless variable y r  for 
various values of the parameter d = @e/2y,  where y = [mi - Ez) ' / z .  The function is sealed 
by an appropriate factor in order to become a dimensionless wavefunction of only two variables 
y r  and c. The latter depends only on the fundamental p m e t e n  of the model. such as the 
coupling constmt g. (6) The s m e  as in (a)  for the potential function -#@). 
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2. Integral transform 

In [5] we discussed a method for solving the Schriidinger equation, which is most suitable 
if at large distances the potential is proportional to an exponential function. It follows 
from (11) that this is the case in the present situation and hence, according to [5 ]  the 
integral transforms appropriate for (IO) and ( i f )  are 

and 

where a0 is a normalization constant and bo is a constant. Substituting (18) into (10) and 
(19) into (ll), we obtain ~ ~ 

and 

P’ 

2y-ILo 
x~ / d$’e(p‘ - p“)e@” + W O  - 2 y )  (21) 

where .9(p - a) is a step function which vanishes for p e a, equals for p = a and is 
equal to 1 otherwise and a = po or a = 2y - respectively. In deriving (21) we have 
assumed that p0/2y < 1. It will he shown below that this implies that we are restricting 
ourselves to the case po < 2 m o .  Now we introduce the dimensionless variables 

and redefine the functions e and V in terms of these variables 

and 
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3. Solution of integral equation 

To obtain the~solution of (26) we make the ansatz 

where a number in square brackets represents the largest integer which is smaller than or 
equal to that number. Notice that, for a fixed s < 00, the right-hand side of the above 
equation is a finite sum, so the question of convergence does not appear. Substituting (31) 
into (26) and comparing equal powers of q and {, we obtain the recurrence relation for the 
functions porn 

where n = 0, 1, . . . . m = 0, I ,  . . . and 

W . m ( Y ,  0) = 0 rpoo(Y. U )  = 1 (33) 

which guarantees that the ansatz is, in fact, a solution. Here and in what follows we have 
adopted the convention that if the upper bound of a sum is less than the lower bound then 
the contribution of the sum is zero. Notice that for fixed n and m the evaluation of the 
right-hand side does not require knowledge of the left-hand side. Also notice that the ansatz 
has been chosen so that the recurrence relation does not depend on the parameters q and 
<. Therefore, once the (on," functions are calculated, (26) is solved for any q and { and we 
can use this solution to find the values of q and < satisfying the boundary conditions (28) 
and (30). Equation (31) combined with the above recurrence relation constitutes the exact 
analytical solution of (26). 

The recurrence relation (32) can be iterated, so that finally no qnm functions will appear 
on the right-hand side. For instance, 

dt ~ (t + 1 - u)( l  +U) 
( f+I ) ( t+2)  ( t + l + u ) ( l - U ) '  

POI(Y, 0) = - In (34) 

However, for higher n and m one obtains multiple-integral representations of qnm which 
are not useful for our purposes. Since one cannot express the functions pOm in terms of 
elementary or special functions, one has to devise a numerical algorithm for their evaluation. 
A suitable algorithm is given in the appendix. As a by-product of this algorithm, we also 
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1 0  
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LL 
5 

-500 

Figme 3. ( U )  The function &(q, 5,  s) as P function of s for a = 0.1 and q = 2.448(5). 
5 = 582.(3). The conStan@ q and 5 were determined from the boundary conditions (28) and 
(30). ( b )  The same as in (a )  for the function Vo(q, 5,s). 

obtain a function f,,,(s, U ) ,  which is very useful since V,(q, <, s) is related to it in a simple 
way: 

where 
Y 

F n m ( Y , u )  =l dtfnm(f,u). (36) 

Notice that, for a fixed s < 00, the right-hand side of (35) is a finite sum. 
Once the functions pnm(y, U )  and F,,(y, u)  are calculated we can use them to calculate 

the function R,(q, <,s) according to,(31) and the function V, (q,<,s) according to (33,  
and to determine the values of q and < for which the boundary conditions (28) and (30) are 
fulfilled. A typical result is illustrated in figure 3. 
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4. Wavefunctions and bind& energies 

To determine the wavefunction *(r) of a constituent we have to determine the normalization 
constant ao. Using the normalization condition (8) and equation (27). we obtain 

where 

Notice that U is the only~ parameter upon which 01 depends. Using (38) and the function 
R, ( q ,  <, s) calculated above, 01 can be determined. A useful fit is 

LY=O1o+ff]u+LYza* U <  1 (39) 

where a0 = 3.52(2), 01, = 10.9(2) and 012 =3.82(9). Using (37) and (27) we can write the 
wavefunction in a dimensionless form: 

Notice that the right-hand side of (40) is a function of the dimensionless quantities y r  and 
U only. Similarly, using (29) and (22) the potential function @(r) can also be written in the 
dimensionless form 

In figures 2(a) and (6) we plotted the wavefunction and the potential function according 
to (40) and (41) respectively for various values of U .  

We define the binding energy E - mo of a constituent particle as the difference between 
its constituent energy E and its bare mass mo. To determine the constituent energy E we 
substitute (37) into the expression for < provided by (22) and using y2 = mz - E2 obtain 

(42) 

Solving for IEl we obtain two solutions: 

and 
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which are real if g 2 N / 4 n m ~ a  6 1. The first root is the constituent energy of each constituent 
in the excited state, while the second root corresponds partly to the ground state and partly 
to the excited state, depending on the value of m. Equations (43) and (44) imply that, 

and 

I &  - - $ - < I .  
mo 

Notice that E* is not larger than E ,  and nevertheless E* is assigned entirely to the excited 
state. The reason is that, as will be shown below, the total energy (the mass) corresponding 
to the bound state with constituent energy E* is always larger than in the case of a bound 
state with constituent energy E. 

In the case when pa = 0, the function a = a0 = 3.52(2) is a pure numerical consfant 
and hence (43) and (44) are explicit formulae. Otherwise, o( is a function of U which itself 
is a function of both parameters fio/mo and g. We will not need the explicit form of this 
function, since a will serve only as a parameterization variable at fixed Po/mo. The allowed 
range of U follows from 

which is obtained from the definition U = p0/2y and from y2  = mi -EZ .  Substituting (45) 
and (46) in '(47), we obtain respectively 

and 

The coupling constant g2N/4xmi ,  for instance, is parameterized by U at fixed po/mo via 

Equation (50) is obtained if one combines (42) and (47) to eliminate E .  Using (50) we can 
convert the dependence on U in (43) and (44) to a dependence on g2N/4nmi and pO/mo. 
The result, Elmo and P/mO as functions of gZN/4xm$ and Polmo, is plotted in figure 4. 
The dotted line indicates the value I/,!? which is the boundary value deviding the two 
functions. 
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Figure 4. The constituent energies E / ~ O  and E * / Q  as functions of the coupling constmt 
g2N/4i imi  at various fixed vdues of poimo. The dotted line indicates the value 1 / f i  which 
is the boundary value dividing the two functions. 

5. Existence condition 

Equations (43) and (44) imply that 

2 ff 
O < -  < -  4rm: N 

since otherwise the constituent energy becomes a complex number, in which case the bound 
state does not exist. In the case when KO = 0, U = a0 = 3.52(2) is a pure numerical constant 
and hence (51) is an explicit necessary and sufficient condition for the existence of bound 
stat e s. 

In the case when p.0 # 0 (51) is not suitable as an explicit existence condition, since 
in this case U is not a pure number but rather a function of U and thus of gzN/4xmi and 
@o/mo. To obtain the existence condition for the case when PO # 0, we write (50) as 

which is the parametrization of the coupling constarit in terms of U at fixed pojmo and N.  
The inequality on the right-hand side of (52) becomes an equality for U = po/l/zmo. Since 
U varies in a definite range given in (48) and (49), equation (52) determines the allowed 
range of the coupling constant, in which a bound-state solution is possible. In figure 5 we 
plot gZN/4xmg as a function of U for a few typical values of pojmo (fuU curves). Notice 
that gZN/4nm: possesses a 1ocal.maximum in the region of smaller U and a local minimum 
in the region of larger U .  From (52) and (39) we obtain 

U, =-- (53) 
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for the location U = UI of the local maximum and 

for the location U = uo of the local minimum. The respective accuracies of (53) and (54) 
are sufficient for all practical purposes. This can be judged by looking at figure 5, where 
u1 from (53) is plotted as a vertical dotted line and uo = a is plotted as a vertical 
broken line. The maximum and the minimum split the allowed range of g2/4j-" into three 
regions: one to the left of the maximal value 

one between the maximal value and the minimal value 

and one to the right of the minimal value 

where 

and (Y is given in (39). These three branches of the coupling constant correspond to three 
different states (particles), and below it will be shown that (56) corresponds to the ground 
state while (55) and (57) each correspond to a different excited state. Hence for the case of 
PO # 0 the model predicts a triplet of particles. Notice that in the case when = 0 (56) 
becomes 

U0 O<- 6- .  - 
4zm; N 

If for certain pO/mo and N it happens that g2/4xm; is outside of the bounds defined 
in (56) then a ground-state solution and a particle associated with it do not exist and there 
are no stable particles in that case. Thus (56) is an explicit condition for the existence of a 
ground state and its associated particle. Notice that (56) is in qualitative agreement with the 
non-relativistic case of the Yukawa potential 151, where the ground-state solution is possible 
only if the coupling constant fZ/4rr is larger than (1.6798/2)(~o/mo). 

In the case, when the condition (56) for the existence of the ground state is violated 
while (55) is fulfilled, the paaicle associated with the ground state does not exist while the 
excited state does. However, as will be shown below, the mass of such a state is larger 
than its bare mass. Hence this state is unstable and represents an unstable particle. 
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Figure 5. g2N/4rr ,n i  ss a function of U for various values of polmi) (full curves). The vertical 
dotted lines and the vertical broken line give the values of U )  and vi) for the maximum and the 
minimum of g respectively. according to the approximate formulae given in the text. 

6. Mass and bare mass 

Instead of calculating the last term in (12) directly. we can use the~virial theorem.(this 
theorem is proved in section 8) part of which is the relation 

Substituting (61) in (12) we obtain 

Notice that the total energy (62) is positive definite. 

we obtain 
We first consider the case when po = 0. In this case the last term in (62) vanishes and 

Substitution of (44) and (43) in (63) yields 
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for the ground state and 

for the excited state. The masses of the corresponding constituent particles are 

m=M1 m*=M,1. (66) 

Thus, for the case of po = 0 the model predicts a doublet in the elementary particle 
sector ( N  = 1) with masses m, m*. Notice that (64)-(66) imply that for fixed parameters 
g2N/4nmi and Nmo 

M N < M N N  m<m* (67) 

despite the fact that according to (44) and (43) E* 6 E. The reason is that, besides the 
contribution from the constituent energies (first term in (9)), the mass also receives a 
contribution from the energy (second term in (9)) which must be spent to create the potential 
in which the constituents are bound. This contribution compensates for the difference 
between E* and E and places M N N  above M N .  Also notice that while M N N  + 00 and 
m' + 00 as g + 0, M N  and m stay finite. 

The state with mass M N N  is the highest excited state with spherical symmetry, since 
we have assumed that all of the constituents occupy the same state and that there are only 
two bound states which each of the constituents can occupy. Our method, however, can be 
extended easily to a situation where one or more constituents occupy the excited state with 
the corresponding constituent energy E* while others remain in the other bound state. The 
resulting excited states will possess masses between M N  and M N N :  

M N  6 MIN. M Z N ,  ' ' ' < M N N .  (68) 

These are all the possible spherically symmetric states, since otherwise there would be more 
states than just a doublet in the N = 1 sector. Hence for the case of po = 0, the total 
number of states with spherical symmetry is 

A further consequence of (64)-(66) is 

A M N  = Nm - MN > 0 

which means that the ground state of the composite particle is stable against disintegration. 
Similarly, one obtains 

AM" = Nm* - M N N  > 0 (70) 



._ 
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which~means that the excited state cannot decay by disintegration with emission of particles 
of mass m*. 

Above we discussed the stability of the composite particle from the point of view of 
disintegration. We now discuss the stability from the point of view of a comparison between 
the bare mass and the physical mass. This criterion allows us to discuss the stability of 
even the elementary particles of the theory. From (64)-(66) it follows that 

for the ground state and 

for the excited state. If we want to associate a particle with a self-interaction bound state, 
then the result that the physical mass is larger than the bare mass means that such a particle 
is unstable. The reason is that in this case some of its continuum states are energetically 
preferable to the bound state. Thus from (71) we conclude that the ground state M N  is 
always stable if it exists, while the excited state M N N  is unstable for smaller values of the 
coupling constant g in the case of (72), and stable for larger values of the coupling constant 
in the case of (73). The phenomenon of instability due to the mass being larger than the 
bare mass is not new. It was observed, for example, for the ground state in the model 
of [6 ] ,  which is based on the nonlinear Schrodinger equation in three dimensions. In that 
model one can give a formal proof (see [7] for the details) that the ground state is unstable 
in the sense that its wavefunction suffers a collapse, i.e. being initially smooth it develops 
a singularity within a finite period of time when subjected to a small perturbation. This 
means that such a state cannot be associated with a stable free particle. 

In the case of (73) the composite particle can exist as a stable (with respect to the 
continuum states) particle with the mass M N  or M”. For the mass difference we have 

which amounts to less than 6%. 
We now discuss the case when p.0 # 0. Using (19), (22), (42) and (47), we obtain 

where 

and Vo(q, <, s) is defined in (25). Notice that 0 is a function of U only. To get some idea 
of the behaviour of p the following fit is useful 
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where BO = 0.834, 
we can rewrite (62) as 

= 0.972 and 8 2  = 2.93. The accuracy of (77) is about 1%. Using (75) 

Substituting (43) and (44) in (78) we can obtain similar mass formulae to (64x66) .  More 
convenient formulae are obtained if, using (52). we eliminate gZN/4zm; from (43) and (44) 
and substitute the result in (78). The resulting mass formulae are 

and 

where 

The advantage of (79)-(81) is that, for a fixed po/mo and Nmo, they depend solely on 
u. The dependence of M N .  MO" and MNON on u for various fixed values of po/mO is 
illustrated in figure I@). In this figure MNINmo is plotted with a full curve, Mo"/Nmo 
with the broken curve and MNoN/Nmo with the chain curve. The dependence on u can be 
converted to the dependence on g2N/4zm$ via (52) 

The result is illustrated in figure I(u). In both figures the dotted vertical lines correspond to 
the maximal values of g2N/4zm; according to (52) (U = ul), while the dotted horizontal 
line corresponds to the absolute minimum of the mass MINmo = 2&/3, which occurs 
at fi0 = 0. Hence we observe that the mass MN of the ground state acquires a minimum 
value at the maximal value of g2/4nmi. We make a similar observation with respect to the 
maximal value of the mass M N :  this occurs at the minimal value of g2/4zm; according 
to (52) (u = UO). Notice that, except for the case when palm0 = 0, part of MN including 
the maximum resides within the continuum, i.e. above Nmo, signalling an unstable state. 
This part becomes larger with increasing p o  f mo and starting with po/mo = 0.36 all of the 
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mass MN resides within the continuum. This means that for a stable ground state the mass 
of the exchange particle cannot be too larze: PO i 0.36mo. 

In the case of elementary particles of the model ( N  = 1) we have a triplet with the 
corresponding masses 

m=M1 m*=Moll m** = M10l (84) 

which are obtained by putting N = 1 in (79)<81). This fact is in contrast to the po = 0 
case where there was a doublet, and is a clear indication that the mass is not an analytic 
function of po a t ~ M  = 0. The mass is also non-analytic at g = g l ,  where it has a minimum, 
and at g = go where it has a local maximum (see equations (58) and (59)). Otherwise it is 
an analytic function of g2N/4xmi and po/mo. 

The appearance of a triplet with different masses'and different constituent energies at 
the same values of g2N/4nmg and po/mO indicates that there are other states with spherical 
symmetry, which can be labelled by the number of constituents in each of the two excited 
states. The lowest-mass state M N  is the ground state, whdre none of the constituents resides 
in an excited state. Then there are states M~,,-L.N where n constituents reside in an excited 
state, k of them in one of the excited states and n - k in the other one. Since all these states 
are spherically symmetric, our method can be easily extended to include them. Basically, 
the only significant change in this case is the tripling of the basic equations, so that we 
would have six coupled equations instead of two. Since in the present case there are no 
other states beyond the triplet, it is fairly clear that these are all spherically symmetric states 
of the model and that their total number is 

Thus in this model there are three elementary particles (triplet), six composite particles with 
two constituents (sextet), ten composite particles with three constituents (decuplet) etc. 

One of the most basic properties of the masses as functions of gZN/4nmi at fixed 
polmo is 

g"N gZN M' M -<- *->- 
4nmi 4nmi Nmo Nmo 

where M' and M are any of the masses MN, MNON,  MO". m; m" and m** evaluated at 
gRN/4xmi and g2N/4xmi respectively. An immediate implication of this result is that 

A M N  = N m -  M N  =- 0 (87) 

(88) 

(89) 

= Nm' - MO" > 0 

AMNON = Nm** - MNON > 0. 

Thus none of the composite particles can decay by disintegration and, in particular, the 
ground state is absolutely stable whenever its mass is below the bare mass. In the case when 
any of the masses is larger than the corresponding bare mass, for instance MNON 2 Nmo 
always, the particle with that mass is unstable as discussed above. 

One of the striking features of the mass (total energy) as a function of the coupling 
constant gz/4nmi is the appearance of a strongly pronounced unique minimum at each 
fixed value of polmo and N (see figure l(a)). These minimal values of the mass and the 
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corresponding coupling constants can be determined from (79), (52) and (53) and, to first 
order in M f mo, are given by 

(90) 

where a0 = 3.52(2), al = 10.9(2), BO = 0.834. The fact that the physical mass of a particle 
possesses such an absolute minimum was noticed earlier in [6] in connection with some 
other model, where it was emphasized that this phenomenon might be a general one and 
might have some deep significance (some speculations are discussed in [3]). 

7. Size parameter 

The size parameter ro has been defined in (13). Substituting (27) and (37) in (13). we obtain 

where 

and Q0 (c) is defined in (38). As in the case a- ~! and p, the function 8 can also be easily 
computed, once the integral equation (26) above is solved. A useful fit, which is accurate 
to about 1%, is 

(93) 
60 s = -J1 + S 1 a + 6 2 a 2  a 6 1 
ff 

where 60 = 8.4, 61 = 1.35, 62 = 5.75 and (Y is given in (39). Thus 

1.3 < 6 < 2.4. (94) 
In the case when po = 0, we have a = 0 and hence using (43) and (44), we obtain 

for the size of the ground state and 

for the size of the excited state. Notice that rg + 00 as gfmo -+ 0 while r$ stays finite. 
This singularity disappears when po # 0, since in this case g go > 0 (see equation (59)). 
For the case of minimal masses, equation (90) for po = 0, the sizes are 

For the ground state (97) corresponds to the minimal size, while for the excited state it 
corresponds to the maximal size. 
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8. Derrick's theorem~and proof of local stability 

Derrick's theorem [SI refers to time-independent solutions of a Class of nonlinear equations 
for real scalar fields and it consists of two parts. The first part is the virial theorem and the 
second part is the proof of local instability. We now recall Derrick's theorem and discuss 
some of the problems connected with it; We then generalize this theorem to a class of 
theories which contains the model investigated in this paper, and derive the conditions of 
local stability. In particular we prove the local stability of the ground-state solution studied 
in this paper. 

Consider the Lagrangian for a real scalar field 0 

and the corresponding equation of motion 

a2e I 
at2 2 

A0 - - = - f'(e) (99) 

where f is a smooth function. A time-independent solution S(r) of (99) corresponds to the 
extremum 6 H = 0 of the energy functional 

= 1 d3r[(Vf?)2 + f (e )]  I, + 12. (100) 

Using this fact and a particular form of the variation 6H, Derrick proved that the kinetic 
part I ,  and the potential part 12 are related according to 

I 1 4 - 3 / 2 = 0 .  (101) 

Equation (101) constitutes the virial theorem. In the case f (6') > 0 this theorem precludes 
the existence of time-independent solutions of (99) since in this case both Iz > 0 and I ,  > 0, 
which contradicts (101). If f (e)  > 0 is not valid, the energy H is not bounded from below 
and hence a time-independent solution of (99) can be stable at most locally. However, using 
a particular form of the variation, Derrick showed that 

S 2 H  = -211 < 0. ( 1 02) 

Local stability requires S2H > 0 (local minimum of the total energy) for all possible 
variations, but to prove the local instability it is sufficient to show that S2H < 0 for a 
particular variation, so that (102) implies that all time-independent solutions of (99) are 
locally unstable. Equation (102) constitutes the second part of Derrick's theorem. Shortly~ 
after Derrick's paper Rosen 141 proved that 6 2 H  > 0 is the necessary and sufficient condition 
for, dynamical stability in the sense of Liapunov. 

In the subsequent repetitions of Derrick's theorem (see for instance [ 9 ] )  the second part 
of Derrick's theorem was dropped and the local stability condition 6?H > 0 replaced by 
the much stronger condition f (e )  > 0. However, if one admits time-dependent solutions, 
in particular stationary bound-state solutions of the form q(r ,  t )  = e-iE'$(v), then the 
latter condition cannot be justified in general and the former, contrary to (102), can now 
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be proved for particular cases. Thus in particular cases, at least locally, stable bound-state 
solutions are possible. A simple illustration of this fact is provided by 

(0 - m; +gq(v*Y)*-l)Y = 0 1 < q < 5 (103) 

A - a2/at2. The local stability of stationaiy bound states of (103) was proved where 0 
in [lo]. Notice that the energy corresponding to (103) is 

and that the interaction potential (last term in (104)) is strictly negative (g is a positive 
constant) and unbounded, and nevertheless the ground state has a finite energy and is 
locally stable. The proof of local stability for the non-relativistic analogue of (103) and 
other examples of stable theories with a non-positive interaction potential can be found in 
[7] and references therein. 

Consider now a system of N complex scalar fields Y ~ ( T ,  t ) ,  j = 1, .  . . , N and a real 
scalar field Q(T ,  t )  with the Lagrangian 

L = - ~ ( a v y a u ~ j  + m ; y q j  - g 6 p ( u ; * q j ) q )  - ;(awauo + &P) 

and the equations of motion 

N 

j=l 
(105) 

(U -mi +gq@p(w;qj)*-')*j = 0 

(0 -&)a = -gp@P-' c(Y:vi)q 

(106) 

(107) 
N 

i=l 

where mo, g, p and q are real positive constants and the fields Yj are normalized according 
to 

1 j = 1, .  . . , N .  

Notice that the left-hand side of (108) is a.constant of motion. There are four important 
special cases to notice: p = q = 1 gives the model investigated in this paper, p = 0 yields 
the case of (103). and q = 0, p = 3 yields the standard Q3 field theory, while q = 0, 
p = 4 yields the standard Q4 field theory. The local stability condition for the second 
case has been derived in [IO] and the existence of stable bound-state solutions in the latter 
two cases has been ruled out already by Derrick's theorem. We now generalize Derrick's 
theorem to the class of theories characterized by (105)-(108) for the case of time-dependent 
but stationary bound-state solutions of the form Y ~ ( T ,  t )  = @j(T)e-iEl', Q(T, t )  = # ( T )  

and for the case of arbitrary p and q. Since this class is less general than in the case of 
Derrick's theorem, we will benefit by being able to derive two additional virial relations. 

For s ta t ionh fields the equations of motion (106), (107) and the normalization 
condition (108) become respectively 

(A - v,' + gq#'(@J@j)*-')@j = 0 (109) 
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and 

(@j l@j )  2jEj I / d'r l @ j ( r ) f  = 1 j = 1 ,  . . . , N ( 1 1 1 )  

where y," = mi - E2 z 0. The corresponding total energy is 
1 

N 
H = / d3r(  x [ V @ ;  . V$j + (E: + m i ) @ , V j  -g@p($;$j)91 + ;[(V&J)' +,U$$']) 

,=I 

E H I  + Hz - H ,  + H3 + Hq. 

, ( 1  1 2 )  

Notice that (1 1 I )  implies 

In order to make the variation of the energy 6 H  we have to choose a proper energy 
functional. Equations (1 11) tell us that we are dealing with a constrained system. According 
to the standard rules of quantum mechanics there are two ways to perform variation of the 
energy S H  for a constrained system. The first [ I l l  is to use an energy functional which does 
not depend on the norm of the variational functiqns corresponding to @j. The second [ 1 2 ]  
is to introduce the normalization condition by real Lagrange multipliers. Both ways are 
equivalent, but for our purposes the first is more convenient. The unique functional of 
the variational fields $Aj and @A, which fulfils the above requirement and which reduces 
to (112) in the case @A, = @ j ,  @A = @ is 

+ f / d3r[(V@d2 + &'&I. ( 1 1 4 )  

Now to perform the variation 8H we have to choose a set of variational fields $Aj and &JL, 
which is large enough to yield all the solutions of S H = 0 or, equivalently, the equations 
of motion (109) and (110). A suitable set of variational fields is 

@ . L ~ ( T )  = A'*(Ar) $ T j ( r )  = A'*$*(Ar) @*(TI = P @ ( A r )  ( 1 1 5 )  

where t is an arbitrary complex and A and s are arbitrary real numbers. The variational 
fields @ ~ j  are not normalized except for A = 1 in which case the normalization is defined 
in ( 1 1 1 ) .  For A = 1 we have 

* l j ( 9  = * j m  = @p-) 41(r) =@(TI ~ .~ H ( 1 )  = H .  ( 1 1 6 )  

The variations S$ j ,  A@;, S@, SH and S2H are defined by 



3622 N Poliatzky 

and 

A d  

Notice that at each r the variations 6@j, 8@; and 84 are arbitrary and independent of each 
other. Therefore, applying the standard variational procedure of quantum mechanics, we 
conclude that 6 H  = O  is equivalent to (111)-(112). 

Since the integration in (1 14) is over the entire space, we can eliminate the dependence 
of the fields on A r  by making a suitable rescaling of the integration variable and obtain 

H(A)  = hZHl  + Hz - AsP+3c9-1)H, + AZ'-'H3 + A25-3H4 (119) 

where HI,. . . , H4 and H I ,  which are independent of A, are defined in (112). From (119) 
and 6 H  = 0 it follows that 

2h'i - [Sp 4- 3(4 -  HI f (2 - I)H3 4- (2s - 3)H4 = 0. (120) 

Since (120) must be valid for all s, it implies two separate virial relations 

2H3+2H4-pH1 = O  (121) 

and 

2HI - H3 - 3H4 - 3(q - 1)Hl = 0. (122) 

Moreover, multiplying (109) by @;, integrating over the entire space and summing over all 
j = 1,. . . , N ,  we obtain a third independent virial relation 

Combining these relations one can obtain other useful relations. For instance, eliminating 
HI and H, and using (113) we obtain 

N 
[2(3 - q)  -PI& + 12(3 - q )  - 3plH4 = mo (5 - z) . (124) 

j=1 

Since H3, H4 and the right-hand side of (124) are positive numbers, we obtain a necessary 
condition for the existence of bound states 

2(3 - q) - p 0. (125) 

Another useful relation is obtained if we eliminate H3 from (124) by means of (121) 
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This is the equation (61) which we used above to determine the mass. 
Now we compute the second variation of the energy S2H and derive the local stability 

conditions which ensure that SZH > 0 for all values of s and t, which are the parameters 
spanning the set of variations. Equation (1 19) implies 

S2H = 2H1 - [ ~ p + 3 ( q  - l ) l [ ~ p + 3 ( q  - 1 )  - 1]H, + ( 2 ~  - 1 ) ( 2 ~  -2) H3+(2s -3)(2s -4)H4. 

(127) 

Eliminating HI, H3 and HI by means of the virial relations (121), (122) and (124), we 
obtain 

2p(2 - p)s2 - 4p(3q - 2)s + 3 p  - 6(q - 1)(3q - 5 )  S2H =~ 
2 0  - 4)  - P j=l  IEjI mo 

+ ( [2p(2  - PIS' - {12p(q - 1) + 8(3 - 4))s - 3p + 12(3 - 4) 

- 6(q - - 5)1/(2(3 - 4) -~ P ) P H ~ .  (128) 

Consider the case when~po = 0. From (112) we have H4 = 0, and hence (128) implies that 
S2H > 0 is equivalent to 

2p(2 - p)s2 - 4p(3q - 2)s + 3 p  - 6(q - 1)(3q - 5 )  > 0 po EO. (12% 

The solution of this inequality is 

(130) 

Notice that for p = 0 (130) coincides with the local stability condition proved in [lo], 
which we quoted in equation (103). Also notice that the only positive integers p and 4 
which can satisfy~(l30) a e  p = 1 and q = 1, which is the case investigated in this paper. 
To have a sensible field theory p and q must be positive integers. Therefore the result-that 
stability alone restricts the choice among the class of theories defined by (105) to just one 
case: p = q = 1-must be considered as satisfactory. 

For each p and q obeying (130). the local stability for a sufficiently small po f '  0 
follows by continuity of Ha. The local stability condition S2H > 0 implies an upper bound 
on p,j. For instance, for p = 1 and q = 1 we substitute equation (75) in (128), which in 
the present notation reads 

? . ( 4 - p )  1 - al2-pI < q < 3 ( 4 - p )  +;12- PI !& =o. 

and obtain the local stability condition for the ground state 

1+88 3 1 + 1 4 8 > 0  s -2- S f - -  
1+2g 2 1 + 2 8  

which must be satisfied for all real s. Solving for 8, we obtain 

8 < 2 11 (1 + T) 
and then using (77) and (79) 

U < 1.0 po < A m o .  

Thus a locally stable ground state for the theory investigated in this paper ( p  = q = 1) 
exists only if U < 1. 
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Appendix 

In this appendix we develop a simple algorithm for the numerical aetermination of the 
functions needed for the evaluation of the functions Ru and Vu. As a first step we split the 
recurrence relation (32) into three separate parts to avoid multiple integration 

Pnm(Y. U )  = ~ ) ' d f & " f .  U )  (135) 

and 

It is easy to see that these equations are explicit recurrence relations, rather than integral 
equations. In order to convert these recurrence relations to a form digestible by computers, 
we divide the interval [0, y1 into N pieces each of length x and use the trapezoidal rule 
to evaluate the integral's. As a result of~the discretization we obtain a new set of functions 
rp,(xi, U ) ,  q n m ( x j ,  U )  and f , , (xj ,  U )  defined on the grid of points xo = 0, X I ,  . . . , XN y, 
which converge to the true functions rpnm(xj, U ) ,  &&j, U )  and f,,(xj, U )  as x + 0. The 
corresponding recumnce relations are 

(138) 

- - 

- - - 
r p " m ( x j , u f = ~ ~ m ( x j - ~ , u )  + i x ( @ n m ( x j - ~ , u )  + 6 n m ( ~ j p ' ~ ) )  

and 
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where x, = j x  and j = 1, . . . , N, n = 0, 1 , .  . . , m = 0.1,. . . . The initial data for the 
recurrence process are 

(141) 
- - - 
V-j,m(xj> a) = 0 v ~ , - I  0) = 0 '  ~ " ~ ( 0 ,  0) = 0 

except for n = m = 0 in which case 

( 142) 
- 
Vm(0. a) = 1 

and 

(143) 
- ~. 
bn,-l ( X i ,  a) = 0 &,,CO, a) = 0 

except for n = 1, m = 0 in which case 

(144) 

The recurrence process starts with the evaluation of the cycle (140) -+ (139) + (138) 
for n = m = 0 and j = 1. Then n, m and j are iterated until certain maximal values, 
j,,,, nmux and m,, say, are reached, which are determined by the step function in (31). 
The result of the recurrence process is vnm(q, a), . . . ,iJn,,,(xjnur, a), n = 0,. . . , nmax, 
m = 0, . . . , m,-. In order to obtain an estimate of the difference between iJn,,,(xi, a) and 
pnm(xj, a), the grid is refined by replacing N by ZN and x by x / 2 ,  and the recurrence 
process is repeated. The resulting Fnm(x2, a),?Jnm(x4, a), . . . are compared with the 
previously calculated  XI, U), Tam(xz, a), . . .. The process terminates when a certain 
specified accuracy is reached and the  XI, a), ipnm(xz, U), . . . can be considered to be 
identical to rp,,j,(xl, a), qnm(x?. a), . . . . Notice that the numerical evaluation of the functions 
qnm does not mean that we are solving the problem numerically. Rather, it means that the 
solution (31) is given in terms of non-standard functions and that we have to teach our 
computer to obtain the values of these well defined analytical functions. 
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